26 research outputs found

    Beliefs about weight and breast cancer: An interview study with high risk women following a 12 month weight loss intervention

    Get PDF
    This is an Version of Record of an article published by BioMed Central in Hereditary Cancer in Clinical Practice on 9 January 2015, available online: http://www.hccpjournal.com/content/13/1/1 This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Breast cancer is the most common cancer in the UK. Lifestyle factors including excess weight contribute to risk of developing the disease. Whilst the exact links between weight and breast cancer are still emerging, it is imperative to explore how women understand these links and if these beliefs impact on successful behaviour change. Overweight/obese premenopausal women (aged 35–45) with a family history of breast cancer (lifetime risk 17–40%) were invited to a semi-structured interview following their participation in a 12 month weight loss intervention aimed at reducing their risk of breast cancer. Interviews were carried out with 9 women who successfully achieved ≥5% weight loss and 11 who were unsuccessful. Data were transcribed verbatim and analysed using thematic analysis. Three themes were developed from the analysis. The first theme how women construct and understand links between weight and breast cancer risk is composed of two subthemes, the construction of weight and breast cancer risk and making sense of weight and breast cancer risk. The second theme - motivation and adherence to weight loss interventions - explains that breast cancer risk can be a motivating factor for adherence to a weight loss intervention. The final theme, acceptance of personal responsibility for health is composed of two subthemes responsibility for one’s own health and responsibility for family health through making sensible lifestyle choices.Beliefs about weight and breast cancer risk were informed by social networks, media reports and personal experiences of significant others diagnosed with breast cancer. Our study has highlighted common doubts, anxieties and questions and the importance of providing a credible rationale for weight control and weight loss which addresses individual concerns

    Expression and prognostic significance of cox-2 and p-53 in hodgkin lymphomas: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclooxygenase (cox) is the rate-limiting enzyme, which catalyzes the conversion of arachidonic acid into prostaglandins and contributes to the inflammatory process. Cyclooxygenase-2 (cox-2), which is one of the two isoforms, plays a role in tumor progression and carcinogenesis. p53 contributes to apoptosis, DNA renewal and cell cycle. Studies concerning the relationship of cox-2 and p53 expressions and carcinogenesis are available, but the association between cox-2 and p53 in Hodgkin lymphoma (HL) is not exactly known.</p> <p>In our study, we examined the association of cox-2 and p53 expression, with age, stage, histopathological subtype, and survival in HL. We also examined correlation between cox-2 and p53 expression.</p> <p>Methods</p> <p>Cox-2 and p53 expressions in Hodgkin-Reed Sternberg cells (HRS) were examined in 54 patients with HL depending on cox-2 expression, stained cases were classified as positive, and unstained cases as negative. Nuclear staining of HRS cells with p53 was evaluated as positive. The classifications of positivity were as follows: negative if<10%; (1+) if 10-25%; (2+) if 25-50%; (3+) if 50-75%, (4+) if >75%.</p> <p>Results</p> <p>Cox-2 and p53 expressions were found in 49 (80%) and 29 (46%) patients, respectively. There were differences between histological subtypes according to cox-2 expression (p = 0.012). Mixed cellular (MC) and nodular sclerosing (NS) subtypes were seen most of the patients and cox-2 expression was evaluated mostly in the mixed cellular subtype.</p> <p>There were no statistically significant relationships between p53 and the histopathological subtypes; or between p53, cox-2 and the factors including stage, age and survival; or between p53 and cox-2 expression (p > 0.05).</p> <p>Conclusion</p> <p>Considering the significant relationship between the cox-2 expression and the subtypes of HL, cox-2 expression is higher in MC and NS subtypes. However the difference between these two subtypes was not significant. This submission must be advocated by studies with large series</p

    Определение скорости перемещения деформаций растяжений в массиве при подземной выемке угля

    Get PDF
    Приведена швидкість переміщення деформацій в непорушеному масиві. Встановлено, що швидкість в породах середнього ступеня метаморфізму складає 15 м/добу. Середня швидкість переміщення деформацій в сланцях – 10 м/добу, в піщаниках – 15 м/добу. При повторній підробці швидкість переміщення деформацій складає 17 м/добу.Deformation’s speed travel in the virgin rock massif is given in this article. It has been determined that deformation’s speed in the rocks of medium-scale metamorphism was 15 meters over the entire circadian period. The average speed of deformation’s travel in the shale rocks is 10 meters over the entire circadian period and in the sandstone is 15 meters over the entire circadian period. During the recurring undermining the speed travel of deformations is 17 meters over the entire circadian period

    Cancer classification using the Immunoscore: a worldwide task force.

    No full text
    Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune)
    corecore