1,075 research outputs found
The effects of tertiary and quaternary infections on the epidemiology of dengue
This is the final version of the article. Available from Public Library of Science via the DOI in this record.The epidemiology of dengue is characterised by irregular epidemic outbreaks and desynchronised dynamics of its four co-circulating virus serotypes. Whilst infection by one serotype appears to convey life-long protection to homologous infection, it is believed to be a risk factor for severe disease manifestations upon secondary, heterologous infection due to the phenomenon of Antibody-Dependent Enhancement (ADE). Subsequent clinical infections are rarely reported and, since the majority of dengue infections are generally asymptomatic, it is not clear if and to what degree tertiary or quaternary infections contribute to dengue epidemiology. Here we investigate the effect of third and subsequent infections on the transmission dynamics of dengue and show that although the qualitative patterns are largely equivalent, the system more readily exhibits the desynchronised serotype oscillations and multi-annual epidemic outbreaks upon their inclusion. More importantly, permitting third and fourth infections significantly increases the force of infection without resorting to high basic reproductive numbers. Realistic age-prevalent patterns and seroconversion rates are therefore easier reconciled with a low value of dengue's transmission potential if allowing for more than two infections; this should have important consequences for dengue control and intervention measures.This work was funded by the BBSRC (PSW) and the Royal Society (MR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
A patient with glycogen storage disease type Ib presenting with acute myeloid leukemia (AML) bearing monosomy 7 and translocation t(3;8)(q26;q24) after 14 years of treatment with granulocyte colony-stimulating factor (G-CSF): A case report
<p>Abstract</p> <p>Introduction</p> <p>Glycogen storage disease type Ib is an autosomal recessive transmitted disorder of glycogen metabolism caused by mutations in the glucose-6-phosphate translocase gene on chromosome 11q23 and leads to disturbed glycogenolysis as well as gluconeogenesis. Besides hepatomegaly, growth retardation, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia, patients suffer from neutropenia associated with functional defects predisposing for severe infections. In order to attenuate these complications, long-term treatment with granulocyte colony-stimulating factor is common but this is associated with an increased risk for acute myeloid leukemia or myelodysplastic syndromes in patients with inherited bone marrow failures such as severe congenital neutropenia. Onset of these myeloid malignancies is linked to cytogenetic aberrations involving chromosome 7. In addition, granulocyte colony-stimulating factor is known to stimulate proliferation of monosomy 7 cells <it>in vitro</it>. To our knowledge, we report for the first time a case report of a patient with glycogen storage disease type Ib, who developed acute myeloid leukemia with a classical monosomy 7 and acute myeloid leukemia-associated translocation t(3;8)(q26;q24) after 14 years of continuous treatment with granulocyte colony-stimulating factor.</p> <p>Case presentation</p> <p>A 28-year-old Turkish man with glycogen storage disease type Ib was admitted to our department because of dyspnea and increasing fatigue. He also presented with gum bleeding, bone pain in his legs, night sweats, recurrent episodes of fever with temperatures up to 39°C and hepatosplenomegaly.</p> <p>A blood count taken on the day of admission showed pancytopenia and a differential count displayed 30% blasts. A bone marrow biopsy was taken which showed a hypercellular marrow with dysplastic features of all three cell lines, while blast count was 20%. Classical cytogenetic analyses as well as fluorescence in situ hybridization showed a monosomy 7 with a translocation t(3;8)(q26;q24). Based on these findings, the diagnosis of acute myeloid leukemia was made.</p> <p>Conclusion</p> <p>Our observations suggest that bone marrow examinations including cytogenetic analysis should be carried out on a regular basis in patients with glycogen storage disease type Ib who are on long-term treatment with granulocyte colony-stimulating factor for severe neutropenia, since this treatment might also contribute to an increased risk for acute myeloid leukemia or myelodysplastic syndromes.</p
Bounds on 4D Conformal and Superconformal Field Theories
We derive general bounds on operator dimensions, central charges, and OPE
coefficients in 4D conformal and N=1 superconformal field theories. In any CFT
containing a scalar primary phi of dimension d we show that crossing symmetry
of implies a completely general lower bound on the central
charge c >= f_c(d). Similarly, in CFTs containing a complex scalar charged
under global symmetries, we bound a combination of symmetry current two-point
function coefficients tau^{IJ} and flavor charges. We extend these bounds to
N=1 superconformal theories by deriving the superconformal block expansions for
four-point functions of a chiral superfield Phi and its conjugate. In this case
we derive bounds on the OPE coefficients of scalar operators appearing in the
Phi x Phi* OPE, and show that there is an upper bound on the dimension of Phi*
Phi when dim(Phi) is close to 1. We also present even more stringent bounds on
c and tau^{IJ}. In supersymmetric gauge theories believed to flow to
superconformal fixed points one can use anomaly matching to explicitly check
whether these bounds are satisfied.Comment: 47 pages, 9 figures; V2: small corrections and clarification
Circuit dissection of the role of somatostatin in itch and pain
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide
Epithelial p38α Controls Immune Cell Recruitment in the Colonic Mucosa
Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-κB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38α in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38α deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38α in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells
Postcopulatory sexual selection
The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes
The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation.
In the European Union, medicines are authorised for some rare disease only if they are judged to be dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the extent of the relationship between computed levels of structural similarity for pairs of molecules and expert judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the assessment of new active compounds for which orphan drug authorisation is being sought
Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency
Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only
to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the
dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate
substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can
be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on
our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate
elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo
adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover,
we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90%
without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days.
Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic
mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem
cells to a specific lineage
Does administration of non-steroidal anti-inflammatory drug determine morphological changes in adrenal cortex: ultrastructural studies
Rofecoxib (Vioxx© made by Merck Sharp & Dohme, the USA) is a non-steroidal anti-inflammatory drug which belongs to the group of selective inhibitors of cyclooxygenasis-2, i.e., coxibs. Rofecoxib was first registered in the USA, in May 1999. Since then the drug was received by millions of patients. Drugs of this group were expected to exhibit increased therapeutic action. Additionally, there were expectations concerning possibilities of their application, at least as auxiliary drugs, in neoplastic therpy due to intensifying of apoptosis. In connection with the withdrawal of Vioxx© (rofecoxib) from pharmaceutical market, attempts were made to conduct electron-microscopic evaluation of cortical part of the adrenal gland in preparations obtained from animals under influence of the drug. Every morning animals from the experimental group (15 rats) received rofecoxib (suspension in physiological saline)—non-steroidal anti-inflammatory drug (Vioxx©, Merck Sharp and Dohme, the USA), through an intragastric tube in the dose of 1.25 mg during 8 weeks. In the evaluated material, there was found a greater number of secretory vacuoles and large, containing cholesterol and other lipids as well as generated glucocorticoids, lipid drops in cytoplasm containing prominent endoplasmic reticulum. There were also found cells with cytoplasm of smaller density—especially in apical and basal parts of cells. Mitochondria occasionally demonstrated features of delicate swelling. The observed changes, which occurred on cellular level with application of large doses of the drug, result from mobilization of adaptation mechanisms of the organism
- …