8 research outputs found

    Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours

    Get PDF
    To understand the chemokine network in a tissue, both chemokine and chemokine receptor expression should be studied. Human epithelial ovarian tumours express a range of chemokines but little is known about the expression and localisation of chemokine receptors. With the aim of understanding chemokine action in this cancer, we investigated receptors for CC–chemokines and their ligands in 25 biopsies of human ovarian cancer. CC–chemokine receptor mRNA was generally absent from solid tumours, the exception being CCR1 which was detected in samples from 75% of patients. CCR1 mRNA localised to macrophages and lymphocytes and there was a correlation between numbers of CD8+ and CCR1 expressing cells (P = 0.031). mRNA for 6 CC-chemokines was expressed in a majority of tumour samples. In a monocytic cell line in vitro, we found that CCR1 mRNA expression was increased 5-fold by hypoxia. We suggest that the CC-chemokine network in ovarian cancer is controlled at the level of CC-chemokine receptors and this may account for the phenotypes of infiltrating cells found in these tumours. The leukocyte infiltrate may contribute to tumour growth and spread by providing growth survival factors and matrix metalloproteases. Thus, CCR1 may be a novel therapeutic target in ovarian cancer. http://www.bjcancer.com © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Dysregulated apoptosis and NFκB expression in COPD subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The abnormal regulation of neutrophil apoptosis may contribute to the ineffective resolution of inflammation in chronic lung diseases. Multiple signalling pathways are implicated in regulating granulocyte apoptosis, in particular, NFκB (nuclear factor-kappa B) signalling which delays constitutive neutrophil apoptosis. Although some studies have suggested a dysregulation in the apoptosis of airway cells in chronic obstructive pulmonary disease (COPD), no studies to date have directly investigated if NFκB is associated with apoptosis of airway neutrophils from COPD patients. The objectives of this study were to examine spontaneous neutrophil apoptosis in stable COPD subjects (n = 13), healthy smoking controls (n = 9) and non-smoking controls (n = 9) and to investigate whether the neutrophil apoptotic process in inflammatory conditions is associated with NFκB activation.</p> <p>Methods</p> <p>Analysis of apoptosis in induced sputum was carried out by 3 methods; light microscopy, Annexin V/Propidium iodide and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. Activation of NFκB was assessed using a flow cytometric method and the phosphorylation state of IκBα was carried out using the Bio-Rad Bio-Plex phosphoprotein IκBα assay.</p> <p>Results</p> <p>Flow cytometric analysis showed a significant reduction in the percentage of sputum neutrophils undergoing spontaneous apoptosis in healthy smokers and subjects with COPD compared to non-smokers (p < 0.001). Similar findings were demonstrated using the Tunel assay and in the morphological identification of apoptotic neutrophils. A significant increase was observed in the expression of both the p50 (p = 0.006) and p65 (p = 0.006) subunits of NFκB in neutrophils from COPD subjects compared to non-smokers.</p> <p>Conclusion</p> <p>These results demonstrate that apoptosis is reduced in the sputum of COPD subjects and in healthy control smokers and may be regulated by an associated activation of NFκB.</p

    Analysis of the mechanisms involved in the stimulation of neutrophil apoptosis by tumour necrosis factor-α

    No full text
    We have previously reported that human neutrophils pretreated with tumour necrosis factor-α (TNF-α) and then exposed to a variety of agents such as immune complexes, zymosan, phorbol 12-myristate 13-acetate (PMA), C5a, fMLP, or granulocyte–macrophage colony-stimulating factor (GM-CSF), undergo a dramatic stimulation of apoptosis, suggesting that TNF-α is able to prime an apoptotic death programme which can be rapidly triggered by different stimuli. We report here that this response involves the participation of Mac-1 (CD11b/CD18), is dependent on caspases 3, 8 and 9, and is associated with both a loss of mitochondrial transmembrane potential and a down-regulation in expression of the anti-apoptotic protein, Mcl-1. Interestingly, we also found that the anti-apoptotic cytokine interleukin-1 (IL-1) improves the ability of TNF-α to promote apoptosis, supporting the notion than TNF-α, acting together with IL-1, may favour the depletion of neutrophils from the inflammatory areas during the course of acute inflammation

    LPS Down-Regulates Specificity Protein 1 Activity by Activating NF-κB Pathway in Endotoxemic Mice

    Get PDF
    <div><p>Background</p><p>Specificity protein (Sp) 1 mediates the transcription of a large number of constitutive genes encoding physiological mediators. NF-κB mediates the expression of hundreds of inducible genes encoding pathological mediators. Crosstalk between Sp1 and NF-κB pathways could be pathophysiologically significant, but has not been studied. This study examined the crosstalk between the two pathways and defined the role of NF-κB signaling in LPS-induced down-regulation of Sp1 activity.</p><p>Methods and Main Findings</p><p>Challenge of wild type mice with <i>samonelia enteritidis</i> LPS (10 mg/kg, i.p.) down-regulated Sp1 binding activity in lungs in a time-dependent manner, which was concomitantly associated with an increased NF-κB activity. LPS down-regulates Sp1 activity by inducing an LPS inducible Sp1-degrading enzyme (LISPDE) activity, which selectively degrades Sp1 protein, resulting in Sp1 down-regulation. Blockade of NF-κB activation in mice deficient in NF-κB p50 gene (NF-κB-KO) suppressed LISPDE activity, prevented Sp1 protein degradation, and reversed the down-regulation of Sp1 DNA binding activity and eNOS expression (an indicator of Sp1 transactivation activity). Inhibition of LISPDE activity using a selective LISPDE inhibitor mimicked the effects of NF-κB blockade. Pretreatment of LPS-challenged WT mice with a selective LISPDE inhibitor increased nuclear Sp1 protein content, restored Sp1 DNA binding activity and reversed eNOS protein down-regulation in lungs. Enhancing tissue level of Sp1 activity by inhibiting NF-κB-mediated Sp1 down-regulation increased tissue level of IL-10 and decreased tissue level of TNF- αin the lungs.</p><p>Conclusions</p><p>NF-κB signaling mediates LPS-induced down-regulation of Sp1 activity. Activation of NF-κB pathway suppresses Sp1 activity and Sp1-mediated anti-inflammatory signals. Conversely, Sp1 signaling counter-regulates NF-κB-mediated inflammatory response. Crosstalk between NF-κB and Sp1 pathways regulates the balance between pro- and anti-inflammatory cytokines.</p></div

    Neutrophil chemoattractant receptors in health and disease: double-edged swords

    No full text
    corecore