80 research outputs found

    Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX) pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides.</p> <p>Results</p> <p>The core fungal cellulases in the optimal cocktail include cellobiohydrolase I [CBH I; glycoside hydrolase (GH) family 7A], cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B) and β-glucosidase (βG; GH family 3). Hemicellulases tested along with the core cellulases include xylanases (LX1, GH family 10; LX2, GH family 10; LX3, GH family 10; LX4, GH family 11; LX5, GH family 10; LX6, GH family 10), β-xylosidase (LβX; GH family 52), α-arabinofuranosidase (LArb, GH family 51) and α-glucuronidase (LαGl, GH family 67) that were cloned, expressed and/or purified from different bacterial sources. Different combinations of these enzymes were tested using a high-throughput microplate based 24 h hydrolysis assay. Both family 10 (LX3) and family 11 (LX4) xylanases were found to most efficiently hydrolyze AFEX pretreated corn stover in a synergistic manner. The optimal mass ratio of xylanases (LX3 and LX4) to cellulases (CBH I, CBH II and EG I) is 25:75. LβX (0.6 mg/g glucan) is crucial to obtaining monomeric xylose (54% xylose yield), while LArb (0.6 mg/g glucan) and LαGl (0.8 mg/g glucan) can both further increase xylose yield by an additional 20%. Compared with Accellerase 1000, a purified cocktail of cellulases supplemented with accessory hemicellulases will not only increase both glucose and xylose yields but will also decrease the total enzyme loading needed for equivalent yields.</p> <p>Conclusions</p> <p>A diverse set of accessory hemicellulases was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (~20 mg protein/g glucan) using an in-house developed cocktail compared to commercial enzymes.</p

    Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity

    Get PDF
    BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer immune-based therapy

    Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria

    Get PDF
    Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIR) and human leukocyte antigens (HLA). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIR and HLA in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIR and HLA so far associated with immunity to malaria.This work was supported through the DELTAS Africa Initiative (Grant no. 107743), that funded Stephen Tukwasibwe through PhD fellowship award, and Annettee Nakimuli through group leader award. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Science (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust (Grant no. 107743) and the UK government. Francesco Colucci is funded by Wellcome Trust grant 200841/Z/16/Z. The project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 695551) for James Traherne and John Trowsdale. Jyothi Jayaraman is a recipient of fellowship from the Centre for Trophoblast Research

    Chickpea

    Get PDF
    The narrow genetic base of cultivated chickpea warrants systematic collection, documentation and evaluation of chickpea germplasm and particularly wild Cicer species for effective and efficient use in chickpea breeding programmes. Limiting factors to crop production, possible solutions and ways to overcome them, importance of wild relatives and barriers to alien gene introgression and strategies to overcome them and traits for base broadening have been discussed. It has been clearly demonstrated that resistance to major biotic and abiotic stresses can be successfully introgressed from the primary gene pool comprising progenitor species. However, many desirable traits including high degree of resistance to multiple stresses that are present in the species belonging to secondary and tertiary gene pools can also be introgressed by using special techniques to overcome pre- and post-fertilization barriers. Besides resistance to various biotic and abiotic stresses, the yield QTLs have also been introgressed from wild Cicer species to cultivated varieties. Status and importance of molecular markers, genome mapping and genomic tools for chickpea improvement are elaborated. Because of major genes for various biotic and abiotic stresses, the transfer of agronomically important traits into elite cultivars has been made easy and practical through marker-assisted selection and marker-assisted backcross. The usefulness of molecular markers such as SSR and SNP for the construction of high-density genetic maps of chickpea and for the identification of genes/QTLs for stress resistance, quality and yield contributing traits has also been discussed

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Double outlet right ventricle, total anomalous venous return, total anomalous hepatic venous drainage and supra mitral ring in a child with Ivemark`s syndrome

    No full text
    Double outlet right ventricle, total anomalous venous return, total anomalous hepatic venous drainage and supra mitral ring with Ivemark syndrome is an unusual combination of cardiac malformations.These complexities of congenital anomalies can pose problem in preoperative diagnosis and surgicalmanagement. We present investigation and surgical management of a three month old child with thesementioned rear combination of anomalies and a brief revive of literature.</p

    Brown planthopper-A ravaging pest of rice ecosystem

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableThe study was conducted to assess nano zinc (ZnN) as a feed supplement with an aim to compare the supplemental dose of inorganic zinc (ZnI). ZnN was synthesized from 0.45 molar (M) zinc nitrate [Zn(NO3)2.6H2O] and 0.9 M sodium hydroxide (NaOH) and was confirmed to be of ZnN by TEM-EDAX measurements. Wister albino rats (rats; 84, 53.6 ± 0.65 g) were divided into seven groups (4 replicate with 3 rats each) and given feed supplemented with zinc for 60 days with either of the following diets: (1) normal control (NC): basal diet (BD) + no supplemental Zn; (2) ZnI-25: BD + 25 mg/kg Zn from inorganic ZnO; (3) ZnN-25: BD + 25 mg/kg of ZnN; (4) ZnN-12.5: BD + 12.5 mg/kg of ZnN; (5) ZnN-6.25: BD + 6.25 mg/kg of ZnN; (6) ZnN-3.125: BD + 3.125 mg/kg of ZnN; (7) ZnN-50: BD + 50 mg/kg of ZnN. T3 and insulin-like growth factor-1 (IGF-1) hormone levels were similar among groups (P > 0.05), whereas T4 and testosterone were significantly affected, based on supplemented dose. Zn supplementation improved both cell-mediated and humoral immunity. However, both cell-mediated immunity at 24 h and humoral immunity were statistically similar in ZnI-25 and ZnN-6.25 groups. Superoxide dismutase 1 gene expression was found to be similar in all experimental groups. The vascular degeneration were found in liver tissues moderately in NC, mildly in ZnN-6.25 and ZnN-3.125 groups, and no observable changes were noticed in kidney and spleen tissues. However, there was a mild damage in intestinal epithelium of ZnN-25 group rats, hyperplasia of goblet cells, and moderate damage in intestinal villi were observed in ZnN-50 group rats. From the study, it can be concluded that ZnN at half the dose of ZnI showed similar or better responses in terms of immunity, SOD-1 expression, hormonal profiles, and the tissue architecture of vital organs in rats, i.e., 25 mg/kg of Zn from ZnI and 12.5 mg/kg of ZnN impacted similar biological responses like immunity, SOD-1 expression, hormonal profiles, and the tissue architecture of vital organs in rats.Not Availabl
    • …
    corecore