881 research outputs found
Suicide ideation of individuals in online social networks
Suicide explains the largest number of death tolls among Japanese adolescents
in their twenties and thirties. Suicide is also a major cause of death for
adolescents in many other countries. Although social isolation has been
implicated to influence the tendency to suicidal behavior, the impact of social
isolation on suicide in the context of explicit social networks of individuals
is scarcely explored. To address this question, we examined a large data set
obtained from a social networking service dominant in Japan. The social network
is composed of a set of friendship ties between pairs of users created by
mutual endorsement. We carried out the logistic regression to identify users'
characteristics, both related and unrelated to social networks, which
contribute to suicide ideation. We defined suicide ideation of a user as the
membership to at least one active user-defined community related to suicide. We
found that the number of communities to which a user belongs to, the
intransitivity (i.e., paucity of triangles including the user), and the
fraction of suicidal neighbors in the social network, contributed the most to
suicide ideation in this order. Other characteristics including the age and
gender contributed little to suicide ideation. We also found qualitatively the
same results for depressive symptoms.Comment: 4 figures, 9 table
Combining filter method and dynamically dimensioned search for constrained global optimization
In this work we present an algorithm that combines the filter technique and the dynamically dimensioned search (DDS) for solving nonlinear and nonconvex constrained global optimization problems. The DDS is a stochastic global algorithm for solving bound constrained problems that in each iteration generates a randomly trial point perturbing some coordinates of the current best point. The filter technique controls the progress related to optimality and feasibility defining a forbidden region of points refused by the algorithm. This region can be given by the flat or slanting filter rule. The proposed algorithm does not compute or approximate any derivatives of the objective and constraint functions. Preliminary experiments show that the proposed algorithm gives competitive results when compared with other methods.The first author thanks a scholarship supported by the International
Cooperation Program CAPES/ COFECUB at the University of Minho.
The second and third authors thanks the support given by FCT (Funda¸c˜ao para
Ciˆencia e Tecnologia, Portugal) in the scope of the projects: UID/MAT/00013/2013
and UID/CEC/00319/2013. The fourth author was partially supported by CNPq-Brazil
grants 308957/2014-8 and 401288/2014-5.info:eu-repo/semantics/publishedVersio
Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.
New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved
Acute haemoabdomen associated with Angiostrongylus vasorum infection in a dog: a case report
A one-year-old intact female, Danish shorthaired pointer was referred to the emergency service with a history of acute collapse and pale mucous membranes after a month of reduced activity but with no other clinical signs. An ultrasound examination of the abdomen indicated the presence of a large amount of free fluid with no obvious cause such as neoplasia or splenic rupture. Fluid analysis had the macroscopic appearance of blood with no signs of infection or neoplasia. Multiple Angiostrongylus vasorum L1 larvae were revealed on a direct rectal faecal smear. The dog was treated with fenbendazole 25 mg/kg orally once daily for 20 days and given supportive treatment. The dog was stabilised on this treatment. Haemoabdomen is a clinical sign where surgical intervention is often considered an integral part of the diagnostic investigation (i.e., laparotomy) or treatment. Failing to make the diagnosis of canine angiostrongylosis before performing surgery may have a serious adverse affect on the outcome. Consequently, in areas where A. vasorum is enzootic, a Baermann test and a direct faecal smear should be included in the initial diagnostic investigation of all dogs presenting with bleeding disorders of unknown origin
Unintentional asphyxia, SIDS, and medically explained deaths:A descriptive study of outcomes of child death review (CDR) investigations following sudden unexpected death in infancy
Background:
A comprehensive Child Death Review (CDR) program was introduced in England and Wales in 2008 but as yet data have only been analysed at a local level, limiting the learning from deaths. The aim of this study is to describe the profile of causes and risk factors for Sudden Unexpected Death in Infancy (SUDI) as determined by the new CDR program.
Methods:
This was a descriptive outcome study using data from Child Death Overview Panel (CDOP) Form C for SUDI cases dying during 2010-2 in the West Midlands region of England. The main outcome measures were: cause of death, risk factors and potential preventability of death, and determination of deaths probably due to unintentional asphyxia.
Results:
Data were obtained for 65/70 (93%) SUDI cases. 20/65 (31%) deaths were initially categorised as due to medical causes; 21/65 (32%) as SIDS, and 24/65 (37%) as undetermined. Reanalysis suggested that 2/21 SIDS and 7/24 undetermined deaths were probably due to unintentional asphyxia, with 6 of these involving co-sleeping and excessive parental alcohol consumption. Deaths classified as ‘undetermined’ had significantly higher total family and environmental risk factor scores (mean 2.6, 95% CI 2.0– 3.3) compared to those classified as SIDS (mean 1.6, 95% CI 1.2-1.9), or medical causes for death (mean 1.1, 95% CI 0.8-1.3). 9/20 (47%) of medical deaths, 19/21 (90%) SIDS and 23/24 (96%) undetermined deaths were considered to be potentially preventable. There were inadequacies in medical provision identified in 5/20 (25%) of medically explained deaths.
Conclusions:
The CDR program results in detailed information about risk factors for SUDI cases but failed to recognise deaths probably due to unintentional asphyxia. The misclassification of probable unintentional asphyxial deaths and SIDS as ‘undetermined deaths’ is likely to limit learning from these deaths and inhibit prevention strategies. Many SUDI occurred in families with mental illness, substance misuse and chaotic lifestyles and most in unsafe sleep-environments. This knowledge could be used to better target safe sleep advice for vulnerable families and prevent SUDI in the future
Quantification of Epithelial Cell Differentiation in Mammary Glands and Carcinomas from DMBA- and MNU-Exposed Rats
Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs) by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6) expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1) and CD49f expression, increased FAK (focal adhesion kinase) activation especially in the CD29hi population, and decreased CD61 (Integrin β3) expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer
Mutation Size Optimizes Speciation in an Evolutionary Model
The role of mutation rate in optimizing key features of evolutionary dynamics has recently been investigated in various computational models. Here, we address the related question of how maximum mutation size affects the formation of species in a simple computational evolutionary model. We find that the number of species is maximized for intermediate values of a mutation size parameter μ; the result is observed for evolving organisms on a randomly changing landscape as well as in a version of the model where negative feedback exists between the local population size and the fitness provided by the landscape. The same result is observed for various distributions of mutation values within the limits set by μ. When organisms with various values of μ compete against each other, those with intermediate μ values are found to survive. The surviving values of μ from these competition simulations, however, do not necessarily coincide with the values that maximize the number of species. These results suggest that various complex factors are involved in determining optimal mutation parameters for any population, and may also suggest approaches for building a computational bridge between the (micro) dynamics of mutations at the level of individual organisms and (macro) evolutionary dynamics at the species level
- …