282 research outputs found

    A Rare Primary Pelvic Hydatid Cyst Presenting as Sciatica

    Get PDF
    Primary hydatid cyst in the pelvis is rare, and usually presents with pressure symptoms affecting the adjacent abdominal organs. We describe a rare hydatid cyst which was eroding the sacral hallow, protruding into the right sciatic foramen and presenting as a radiating pain and weakness of right lower limb due to compression of the lumbosacral nerve roots. Laparotomy with removal of cyst and postoperative treatment with albendazole is effective in controlling the disease and preventing recurrence

    A Rare Xanthogranulomatous Oophoritis Presenting as Ovarian Cancer

    Get PDF
    Xanthogranulomatous inflammation is an uncommon form of chronic inflammation that is destructive to affected organs; it is characterized by the presence of lipid-filled macrophages with admixed lymphocytes, plasma cells, and neutrophils. Only a few cases of xanthogranulomatous oophoritis have been reported to date. We describe a rare case of xanthogranulomatous oophoritis with involvement of omentum

    A review on applications of Cu2ZnSnS4 as alternative counter electrodes in dye-sensitized solar cells

    Get PDF
    This is the final version. Available from AIP Publishing via the DOI in this record. A contribution of counter electrode (CE) emphasis a great impact towards enhancement of a dye-sensitized solar cell's (DSSC) performance and Pt based CE sets a significant benchmark in this field. Owing to cost effective noble metal, less abundance and industrial large scale application purpose, an effective replacement for Pt is highly demanded. There are several approaches to improve the performance of a CE for enhancing the power conversion efficiency with a less costly and facile device. To address this issue, reasonable efforts execute to find out suitable replacement of Pt is becoming a challenge by keeping the same electrochemical properties of Pt in a cheaper and eco-friendlier manner. With this, cheaper element based quaternary chalcogenide, Cu2ZnSnS4 (CZTS) becomes a prominent alternative to Pt and used as a successful CE in DSSC also. This review presents brief discussion about the basic properties of CZTS including its synthesis strategy, physicochemical properties and morphology execution and ultimate application as an alternative Pt free CE for a low cost based enhanced DSSC device. It is therefore, imperative for engineering of CZTS material and optimization of the fabrication method for the improvement of DSSC performance.Research Council of Norwa

    Display of native antigen on cDC1 that have spatial access to both T and B cells underlies efficient humoral vaccination

    Get PDF
    Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses. This conclusion is, however, at odds with evidence that targeting Ag to Clec9A (DNGR1), expressed by cDC1, induces strong humoral responses. In this study, we reveal that murine cDC1 interact extensively with B cells at the border of B cell follicles and, when Ag is targeted to Clec9A, can display native Ag for B cell activation. This leads to efficient induction of humoral immunity. Our findings indicate that surface display of native Ag on cDC with access to both T and B cells is key to efficient humoral vaccination

    Phyllanthus spp. Induces Selective Growth Inhibition of PC-3 and MeWo Human Cancer Cells through Modulation of Cell Cycle and Induction of Apoptosis

    Get PDF
    BACKGROUND: Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC(50)) values of 150-300 µg/ml for aqueous extract and 50-150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear "ladder" fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants. CONCLUSIONS/SIGNIFICANCE: Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent

    Glycolate Oxidase Isozymes Are Coordinately Controlled by GLO1 and GLO4 in Rice

    Get PDF
    Glycolate oxidase (GLO) is a key enzyme in photorespiratory metabolism. Four putative GLO genes were identified in the rice genome, but how each gene member contributes to GLO activities, particularly to its isozyme profile, is not well understood. In this study, we analyzed how each gene plays a role in isozyme formation and enzymatic activities in both yeast cells and rice tissues. Five GLO isozymes were detected in rice leaves. GLO1 and GLO4 are predominately expressed in rice leaves, while GLO3 and GLO5 are mainly expressed in the root. Enzymatic assays showed that all yeast-expressed GLO members except GLO5 have enzymatic activities. Further analyses suggested that GLO1, GLO3 and GLO4 interacted with each other, but no interactions were observed for GLO5. GLO1/GLO4 co-expressed in yeast exhibited the same isozyme pattern as that from rice leaves. When either GLO1 or GLO4 was silenced, expressions of both genes were simultaneously suppressed and most of the GLO activities were lost, and consistent with this observation, little GLO isozyme protein was detected in the silenced plants. In contrast, no observable effect was detected when GLO3 was suppressed. Comparative analyses between the GLO isoforms expressed in yeast and the isozymes from rice leaves indicated that two of the five isozymes are homo-oligomers composed of either GLO1 or GLO4, and the other three are hetero-oligomers composed of both GLO1 and GLO4. Our current data suggest that GLO isozymes are coordinately controlled by GLO1 and GLO4 in rice, and the existence of GLO isozymes and GLO molecular and compositional complexities implicate potential novel roles for GLO in plants

    NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    Get PDF
    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases

    MiR-155 Induction by F. novicida but Not the Virulent F. tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response

    Get PDF
    The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella
    corecore