47 research outputs found
Geophysical Survey in Sub-Saharan Africa: magnetic and Electromagnetic Investigation of the UNESCO World Heritage Site of Songo Mnara, Tanzania
Magnetometry and Slingram electromagnetic surveys were
conducted at the UNESCO World Heritage Site of Songo Mnara, Tanzania, as part of a multi-national programme of investigation to examine the uses of space within and outside of this stonetown. The town was a major Islamic trading port during the 14th and 15th centuries.The surveys detected significant evidence for the containment of activities within the town walls, and previously unknown anthropogenic activity was revealed between the existing coral rag buildings, as well as within the open areas inside the town. Over 40 areas of magnetic disturbance were identified that corresponded directly with areas of high magnetic susceptibility in the Slingram electromagnetic in-phase responses.On excavation many of these anomalies were found to correlate with wattle and daub structures, indicating a hitherto unidentified population, and the location of the anomalies also suggests a potentially deliberate delineation of space within the open areas of the stonetown. The combined results of the three geophysical data sets indicate that there are clear delineations in the use of space within Songo Mnara. This
coupled with the presence of industrial activities and evidence of more ephemeral occupation, neither of which
had previously been recorded at the site, indicates that the pre-existing town plan is in need of significant
reappraisal. The current plan, based upon the remains of extant and collapsed coral buildings, can now be updated to
incorporate the more ephemeral aspects of Swahili sites
including activity areas, and notably, the homes of the ‘hidden majority’of the population.The results establish the benefit of a combined approach at these sites, and demonstrate that further invasive and non-invasive exploration is required in order to fully exploit the significance of the role of geophysical techniques in understanding Swahili towns
Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
© 2018. The American Astronomical Society.. New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100 larger than during its dormant state. The X-ray flux one month after reactivation was at least 800 larger than during quiescence, and has been decaying exponentially on a 111 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation
Betel quid dependence is associated with functional connectivity changes of the anterior cingulate cortex: a resting-state fMRI study
Molecular Chaperone Mediated Late-Stage Neuroprotection in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the spinal cord, brain stem, and motor cortex. Mutations in superoxide dismutase (SOD1) are associated with familial ALS and lead to SOD1 protein misfolding and aggregation. Here we show that the molecular chaperone, HSJ1 (DNAJB2), mutations in which cause distal hereditary motor neuropathy, can reduce mutant SOD1 aggregation and improve motor neuron survival in mutant SOD1 models of ALS. Overexpression of human HSJ1a (hHSJ1a) in vivo in motor neurons of SOD1(G93A) transgenic mice ameliorated disease. In particular, there was a significant improvement in muscle force, increased motor unit number and enhanced motor neuron survival. hHSJ1a was present in a complex with SOD1(G93A) and led to reduced SOD1 aggregation at late stages of disease progression. We also observed altered ubiquitin immunoreactivity in the double transgenic animals, suggesting that ubiquitin modification might be important for the observed improvements. In a cell model of SOD1(G93A) aggregation, HSJ1a preferentially bound to mutant SOD1, enhanced SOD1 ubiquitylation and reduced SOD1 aggregation in a J-domain and ubiquitin interaction motif (UIM) dependent manner. Collectively, the data suggest that HSJ1a acts on mutant SOD1 through a combination of chaperone, co-chaperone and pro-ubiquitylation activity. These results show that targeting SOD1 protein misfolding and aggregation in vivo can be neuroprotective and suggest that manipulation of DnaJ molecular chaperones might be useful in the treatment of ALS
Rare neonatal diabetes insipidus and associated late risks: Case report
<p>Abstract</p> <p>Background</p> <p>Most cases of neonatal central diabetes insipidus are caused by an injury, which often results in other handicaps in the patient. The infant’s prognosis will be determined by his or her own early age and disability as well as by the physician’s skill. However, the rarity of this condition prevents the acquisition of personal experience dealing with it.</p> <p>Case Presentation</p> <p> A neonatal hemorrhagic stroke, caused by an aortic coarctation, caused right lower limb paresis, swallowing disability, and central diabetes insipidus in a term infant. The scant oral intake, as a consequence of his disability, caused progressive undernutrition which closed a vicious circle, delaying his development and his ability to overcome the swallowing handicap. On the other hand, nasal desmopressin absorption was blocked by several common colds, resulting in brain bleeding because of severe dehydration. This even greater brain damage hampered the improvement of swallowing, closing a second harmful circle. Moreover, a devastating central myelinolysis with quadriplegia, caused by an uncontrolled intravenous infusion, consummated a pernicious sequence, possibly unreported.</p> <p>Conclusions</p> <p>The child’s overall development advanced rapidly when his nutrition was improved by gastrostomy: This was a key effect of nutrition on his highly sensitive neurodevelopment. Besides, this case shows potential risks related to intranasal desmopressin treatment in young children.</p
Effects of ovariectomy and hormone replacement on submucosal collagen and blood vessels of the anal canal of rats
Improvement of HbA1c Without Increased Hypoglycemia in Adolescents and Young Adults with Type 1 Diabetes Mellitus Treated with Recombinant Human Insulin-like Growth Factor-I and Insulin
The Structural Basis of Erwinia rhapontici Isomaltulose Synthase
Sucrose isomerase NX-5 from Erwinia rhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonas mesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations
