405 research outputs found

    A cross-sectional study of depressive symptoms and diabetes self-care in African Americans and Hispanics/Latinos with diabetes: the role of self-efficacy

    Get PDF
    Purpose The purpose of this study is to examine the relationship between depressive symptoms and diabetes self-care in African American and Hispanic/Latino patients with type 2 diabetes and whether the association, if any, is mediated by diabetes-related self-efficacy. Methods The sample included self-report baseline data of African American and Hispanic/Latino patients with type 2 diabetes who were aged ≥18 years and enrolled in a diabetes self-management intervention study. Depressive symptoms were assessed with the 9-item Patient Health Questionnaire. The Summary of Diabetes Self-care Activities measured engagement in healthy eating, physical activity, blood glucose checking, foot care, and smoking. The Diabetes Empowerment Scale–Short Form assessed diabetes-related psychosocial self-efficacy. Indirect effects were examined with the Baron and Kenny regression technique and Sobel testing. Results Sample characteristics (n = 250) were as follows: mean age of 53 years, 68% women, 54% African American, and 74% with income <$20 000. Depressive symptoms showed a significant inverse association with the self-care domains of general diet, specific diet, physical activity, and glucose monitoring in the African American group. In Hispanics/Latinos, depression was inversely associated with specific diet. Self-efficacy served a significant mediational role in the relation between depression and foot care among African Americans. Conclusions Self-efficacy mediated the relationship between depression and foot care in the African American group but was not found to be a mediator of any self-care areas within the Hispanic/Latino group. In clinical practice, alleviation of depressive symptoms may improve self-care behavior adherence. Diabetes education may consider inclusion of components to build self-efficacy related to diabetes self-care, especially among African American patients

    A cross-sectional study of depressive symptoms and diabetes self-care in African Americans and Hispanics/Latinos with diabetes: the role of self-efficacy

    Get PDF
    Purpose The purpose of this study is to examine the relationship between depressive symptoms and diabetes self-care in African American and Hispanic/Latino patients with type 2 diabetes and whether the association, if any, is mediated by diabetes-related self-efficacy. Methods The sample included self-report baseline data of African American and Hispanic/Latino patients with type 2 diabetes who were aged ≥18 years and enrolled in a diabetes self-management intervention study. Depressive symptoms were assessed with the 9-item Patient Health Questionnaire. The Summary of Diabetes Self-care Activities measured engagement in healthy eating, physical activity, blood glucose checking, foot care, and smoking. The Diabetes Empowerment Scale–Short Form assessed diabetes-related psychosocial self-efficacy. Indirect effects were examined with the Baron and Kenny regression technique and Sobel testing. Results Sample characteristics (n = 250) were as follows: mean age of 53 years, 68% women, 54% African American, and 74% with income <$20 000. Depressive symptoms showed a significant inverse association with the self-care domains of general diet, specific diet, physical activity, and glucose monitoring in the African American group. In Hispanics/Latinos, depression was inversely associated with specific diet. Self-efficacy served a significant mediational role in the relation between depression and foot care among African Americans. Conclusions Self-efficacy mediated the relationship between depression and foot care in the African American group but was not found to be a mediator of any self-care areas within the Hispanic/Latino group. In clinical practice, alleviation of depressive symptoms may improve self-care behavior adherence. Diabetes education may consider inclusion of components to build self-efficacy related to diabetes self-care, especially among African American patients

    SynBlast: Assisting the analysis of conserved synteny information

    Get PDF
    <p>Abstract</p> <p>Motivation</p> <p>In the last years more than 20 vertebrate genomes have been sequenced, and the rate at which genomic DNA information becomes available is rapidly accelerating. Gene duplication and gene loss events inherently limit the accuracy of orthology detection based on sequence similarity alone. Fully automated methods for orthology annotation do exist but often fail to identify individual members in cases of large gene families, or to distinguish missing data from traceable gene losses. This situation can be improved in many cases by including conserved synteny information.</p> <p>Results</p> <p>Here we present the <monospace>SynBlast</monospace> pipeline that is designed to construct and evaluate local synteny information. <monospace>SynBlast</monospace> uses the genomic region around a focal reference gene to retrieve candidates for homologous regions from a collection of target genomes and ranks them in accord with the available evidence for homology. The pipeline is intended as a tool to aid high quality manual annotation in particular in those cases where automatic procedures fail. We demonstrate how <monospace>SynBlast</monospace> is applied to retrieving orthologous and paralogous clusters using the vertebrate <it>Hox </it>and <it>ParaHox </it>clusters as examples.</p> <p>Software</p> <p>The <monospace>SynBlast</monospace> package written in <monospace>Perl</monospace> is available under the GNU General Public License at <url>http://www.bioinf.uni-leipzig.de/Software/SynBlast/</url>.</p

    “Genes”

    Get PDF
    In order to describe a cell at molecular level, a notion of a “gene” is neither necessary nor helpful. It is sufficient to consider the molecules (i.e., chromosomes, transcripts, proteins) and their interactions to describe cellular processes. The downside of the resulting high resolution is that it becomes very tedious to address features on the organismal and phenotypic levels with a language based on molecular terms. Looking for the missing link between biological disciplines dealing with different levels of biological organization, we suggest to return to the original intent behind the term “gene”. To this end, we propose to investigate whether a useful notion of “gene” can be constructed based on an underlying notion of function, and whether this can serve as the necessary link and embed the various distinct gene concepts of biological (sub)disciplines in a coherent theoretical framework. In reply to the Genon Theory recently put forward by Klaus Scherrer and Jürgen Jost in this journal, we shall discuss a general approach to assess a gene definition that should then be tested for its expressiveness and potential cross-disciplinary relevance

    Effects of Long-Term Space Flight on Erythrocytes and Oxidative Stress of Rodents

    Get PDF
    Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as “space anemia”. Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants

    Isolation of Hox Cluster Genes from Insects Reveals an Accelerated Sequence Evolution Rate

    Get PDF
    Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution

    Physical activity and quality of life in community dwelling older adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical activity has been consistently associated with enhanced quality of life (QOL) in older adults. However, the nature of this relationship is not fully understood. In this study of community dwelling older adults, we examined the proposition that physical activity influences global QOL through self-efficacy and health-status.</p> <p>Methods</p> <p>Participants (N = 321, <it>M </it>age = 63.8) completed measures of physical activity, self-efficacy, global QOL, physical self worth, and disability limitations. Data were analyzed using covariance modeling to test the fit of the hypothesized model.</p> <p>Results</p> <p>Analyses indicated direct effects of a latent physical activity variable on self-efficacy but not disability limitations or physical self-worth; direct effects of self-efficacy on disability limitations and physical self worth but not QOL; and direct effects of disability limitations and physical self-worth on QOL.</p> <p>Conclusion</p> <p>Our findings support the role of self-efficacy in the relationship between physical activity and QOL as well as an expanded QOL model including both health status indicators and global QOL. These findings further suggest future PA promotion programs should include strategies to enhance self-efficacy, a modifiable factor for improving QOL in this population.</p

    Liver-Specific Commd1 Knockout Mice Are Susceptible to Hepatic Copper Accumulation

    Get PDF
    Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers. Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1Δhep) were generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in Commd1Δhep mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1Δhep mice were viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1Δhep mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II, neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was clearly augmented with age in Commd1Δhep mice. Although COMMD1 expression is associated with changes in ATP7B protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1Δhep mice could be detected. Despite the absence of hepatocellular toxicity in Commd1Δhep mice, the changes in liver copper displayed several parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the molecular mechanisms underlying hepatic copper homeostasis
    corecore