82 research outputs found
Abelian Functions for Trigonal Curves of Genus Three
We develop the theory of generalized Weierstrass sigma- and \wp-functions
defined on a trigonal curve of genus three. In particular we give a list of the
associated partial differential equations satisfied by the \wp-functions, a
proof that the coefficients of the power series expansion of the sigma-function
are polynomials of moduli parameters, and the derivation of two addition
formulae.Comment: 32 pages, no figures. Revised version has the a fuller description of
the general (3,4) trigonal curve results, the first version described only
the "Purely Trigonal" cas
Some remarks on the hyperelliptic moduli of genus 3
In 1967, Shioda \cite{Shi1} determined the ring of invariants of binary
octavics and their syzygies using the symbolic method. We discover that the
syzygies determined in \cite{Shi1} are incorrect. In this paper, we compute the
correct equations among the invariants of the binary octavics and give
necessary and sufficient conditions for two genus 3 hyperelliptic curves to be
isomorphic over an algebraically closed field , . For
the first time, an explicit equation of the hyperelliptic moduli for genus 3 is
computed in terms of absolute invariants.Comment: arXiv admin note: text overlap with arXiv:1209.044
Akns Hierarchy, Self-Similarity, String Equations and the Grassmannian
In this paper the Galilean, scaling and translational self--similarity
conditions for the AKNS hierarchy are analysed geometrically in terms of the
infinite dimensional Grassmannian. The string equations found recently by
non--scaling limit analysis of the one--matrix model are shown to correspond to
the Galilean self--similarity condition for this hierarchy. We describe, in
terms of the initial data for the zero--curvature 1--form of the AKNS
hierarchy, the moduli space of these self--similar solutions in the Sato
Grassmannian. As a byproduct we characterize the points in the Segal--Wilson
Grassmannian corresponding to the Sachs rational solutions of the AKNS equation
and to the Nakamura--Hirota rational solutions of the NLS equation. An explicit
1--parameter family of Galilean self--similar solutions of the AKNS equation
and the associated solution to the NLS equation is determined.Comment: 25 pages in AMS-LaTe
Closed geodesics and billiards on quadrics related to elliptic KdV solutions
We consider algebraic geometrical properties of the integrable billiard on a
quadric Q with elastic impacts along another quadric confocal to Q. These
properties are in sharp contrast with those of the ellipsoidal Birkhoff
billiards. Namely, generic complex invariant manifolds are not Abelian
varieties, and the billiard map is no more algebraic. A Poncelet-like theorem
for such system is known. We give explicit sufficient conditions both for
closed geodesics and periodic billiard orbits on Q and discuss their relation
with the elliptic KdV solutions and elliptic Calogero systemComment: 23 pages, Latex, 1 figure Postscrip
On Separation of Variables for Integrable Equations of Soliton Type
We propose a general scheme for separation of variables in the integrable
Hamiltonian systems on orbits of the loop algebra
. In
particular, we illustrate the scheme by application to modified Korteweg--de
Vries (MKdV), sin(sinh)-Gordon, nonlinear Schr\"odinger, and Heisenberg
magnetic equations.Comment: 22 page
Fuchs versus Painlev\'e
We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e
VI. We then show that the polynomiality of the expressions of the correlation
functions (and form factors) in terms of the complete elliptic integral of the
first and second kind,
and , is a straight consequence of the fact that the differential
operators corresponding to the entries of Toeplitz-like determinants, are
equivalent to the second order operator which has as solution (or,
for off-diagonal correlations to the direct sum of and ). We show
that this can be generalized, mutatis mutandis, to the anisotropic Ising model.
The singled-out second order linear differential operator being replaced
by an isomonodromic system of two third-order linear partial differential
operators associated with , the Jacobi's form of the complete elliptic
integral of the third kind (or equivalently two second order linear partial
differential operators associated with Appell functions, where one of these
operators can be seen as a deformation of ). We finally explore the
generalizations, to the anisotropic Ising models, of the links we made, in two
previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and
elliptic curves. In particular the elliptic representation of Painlev\'e VI has
to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of
Difference Equations, SIDE VII meeting held in Melbourne during July 200
Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation - A Review
Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further
- …