82 research outputs found

    Abelian Functions for Trigonal Curves of Genus Three

    Full text link
    We develop the theory of generalized Weierstrass sigma- and \wp-functions defined on a trigonal curve of genus three. In particular we give a list of the associated partial differential equations satisfied by the \wp-functions, a proof that the coefficients of the power series expansion of the sigma-function are polynomials of moduli parameters, and the derivation of two addition formulae.Comment: 32 pages, no figures. Revised version has the a fuller description of the general (3,4) trigonal curve results, the first version described only the "Purely Trigonal" cas

    Some remarks on the hyperelliptic moduli of genus 3

    Full text link
    In 1967, Shioda \cite{Shi1} determined the ring of invariants of binary octavics and their syzygies using the symbolic method. We discover that the syzygies determined in \cite{Shi1} are incorrect. In this paper, we compute the correct equations among the invariants of the binary octavics and give necessary and sufficient conditions for two genus 3 hyperelliptic curves to be isomorphic over an algebraically closed field kk, chk2,3,5,7\ch k \neq 2, 3, 5, 7. For the first time, an explicit equation of the hyperelliptic moduli for genus 3 is computed in terms of absolute invariants.Comment: arXiv admin note: text overlap with arXiv:1209.044

    Akns Hierarchy, Self-Similarity, String Equations and the Grassmannian

    Get PDF
    In this paper the Galilean, scaling and translational self--similarity conditions for the AKNS hierarchy are analysed geometrically in terms of the infinite dimensional Grassmannian. The string equations found recently by non--scaling limit analysis of the one--matrix model are shown to correspond to the Galilean self--similarity condition for this hierarchy. We describe, in terms of the initial data for the zero--curvature 1--form of the AKNS hierarchy, the moduli space of these self--similar solutions in the Sato Grassmannian. As a byproduct we characterize the points in the Segal--Wilson Grassmannian corresponding to the Sachs rational solutions of the AKNS equation and to the Nakamura--Hirota rational solutions of the NLS equation. An explicit 1--parameter family of Galilean self--similar solutions of the AKNS equation and the associated solution to the NLS equation is determined.Comment: 25 pages in AMS-LaTe

    Closed geodesics and billiards on quadrics related to elliptic KdV solutions

    Get PDF
    We consider algebraic geometrical properties of the integrable billiard on a quadric Q with elastic impacts along another quadric confocal to Q. These properties are in sharp contrast with those of the ellipsoidal Birkhoff billiards. Namely, generic complex invariant manifolds are not Abelian varieties, and the billiard map is no more algebraic. A Poncelet-like theorem for such system is known. We give explicit sufficient conditions both for closed geodesics and periodic billiard orbits on Q and discuss their relation with the elliptic KdV solutions and elliptic Calogero systemComment: 23 pages, Latex, 1 figure Postscrip

    On Separation of Variables for Integrable Equations of Soliton Type

    Get PDF
    We propose a general scheme for separation of variables in the integrable Hamiltonian systems on orbits of the loop algebra sl(2,C)×P(λ,λ1)\mathfrak{sl}(2,\Complex)\times \mathcal{P}(\lambda,\lambda^{-1}). In particular, we illustrate the scheme by application to modified Korteweg--de Vries (MKdV), sin(sinh)-Gordon, nonlinear Schr\"odinger, and Heisenberg magnetic equations.Comment: 22 page

    Fuchs versus Painlev\'e

    Full text link
    We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e VI. We then show that the polynomiality of the expressions of the correlation functions (and form factors) in terms of the complete elliptic integral of the first and second kind, K K and E E, is a straight consequence of the fact that the differential operators corresponding to the entries of Toeplitz-like determinants, are equivalent to the second order operator LE L_E which has E E as solution (or, for off-diagonal correlations to the direct sum of LE L_E and d/dt d/dt). We show that this can be generalized, mutatis mutandis, to the anisotropic Ising model. The singled-out second order linear differential operator LE L_E being replaced by an isomonodromic system of two third-order linear partial differential operators associated with Π1 \Pi_1, the Jacobi's form of the complete elliptic integral of the third kind (or equivalently two second order linear partial differential operators associated with Appell functions, where one of these operators can be seen as a deformation of LE L_E). We finally explore the generalizations, to the anisotropic Ising models, of the links we made, in two previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and elliptic curves. In particular the elliptic representation of Painlev\'e VI has to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of Difference Equations, SIDE VII meeting held in Melbourne during July 200

    Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation - A Review

    Full text link
    Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further

    Strategies for preventing group B streptococcal infections in newborns: A nation-wide survey of Italian policies

    Get PDF

    Evolution and pathology in Chagas disease: a review

    Full text link
    corecore