927 research outputs found

    Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro

    Get PDF
    Trans-splicing, the in vivo joining of two RNA molecules, is well characterized in several groups of simple organisms but was long thought absent from fungi, plants and mammals. However, recent bioinformatic analyses of expressed sequence tag (EST) databases suggested widespread trans-splicing in mammals^1-2^. Splicing, including the characterised trans-splicing systems, involves conserved sequences at the splice junctions. Our analysis of a yeast non-coding RNA revealed that around 30% of the products of reverse transcription lacked an internal region of 117 nt, suggesting that the RNA was spliced. The junction sequences lacked canonical splice-sites but were flanked by direct repeats, and further analyses indicated that the apparent splicing actually arose because reverse transcriptase can switch templates during transcription^3^. Many newly identified, apparently trans-spliced, RNAs lacked canonical splice sites but were flanked by short regions of homology, leading us to question their authenticity. Here we report that all reported categories of non-canonical splicing could be replicated using an in vitro reverse transcription system with highly purified RNA substrates. We observed the reproducible occurrence of ostensible trans-splicing, exon shuffling and sense-antisense fusions. The latter generate apparent antisense non-coding RNAs, which are also reported to be abundant in humans^4^. Different reverse transcriptases can generate different products of template switching, providing a simple diagnostic. Many reported examples of splicing in the absence of canonical splicing signals may be artefacts of cDNA preparation

    Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m7 guanosine cap

    Get PDF
    In eukaryotes the majority of mRNAs have an m7G cap that is added cotranscriptionally and that plays an important role in many aspects of mRNA metabolism. The nuclear cap-binding complex (CBC; consisting of CBP20 and CBP80) mediates the stimulatory functions of the cap in pre-mRNA splicing, 3' end formation, and U snRNA export. As little is known about how nuclear CBC mediates the effects of the cap in higher eukaryotes, we have characterized proteins that interact with CBC in HeLa cell nuclear extracts as potential mediators of its function. Using cross-linking and coimmunoprecipitation, we show that eukaryotic translation initiation factor 4G (eIF4G), in addition to its function in the cytoplasm, is a nuclear CBC-interacting protein. We demonstrate that eIF4G interacts with CBC in vitro and that, in addition to its cytoplasmic localization, there is a significant nuclear pool of eIF4G in mammalian cells in vivo. Immunoprecipitation experiments suggest that, in contrast to the cytoplasmic pool, much of the nuclear eIF4G is not associated with eIF4E (translation cap binding protein of eIF4F) but is associated with CBC. While eIF4G stably associates with spliceosomes in vitro and shows close association with spliceosomal snRNPs and splicing factors in vivo, depletion studies show that it does not participate directly in the splicing reaction. Taken together the data indicate that nuclear eIF4G may be recruited to pre-mRNAs via its interaction with CBC and accompanies the mRNA to the cytoplasm, facilitating the switching of CBC for eIF4F. This may provide a mechanism to couple nuclear and cytoplasmic functions of the mRNA cap structure

    Effect of atorvastatin on glycaemia progression in patients with diabetes:an analysis from the Collaborative Atorvastatin in Diabetes Trial (CARDS)

    Get PDF
    AIMS/HYPOTHESIS: In an individual-level analysis we examined the effect of atorvastatin on glycaemia progression in type 2 diabetes and whether glycaemia effects reduce the prevention of cardiovascular disease (CVD) with atorvastatin. METHODS: The study population comprised 2,739 people taking part in the Collaborative Atorvastatin Diabetes Study (CARDS) who were randomised to receive atorvastatin 10 mg or placebo and who had post-randomisation HbA(1c) data. This secondary analysis used Cox regression to estimate the effect of atorvastatin on glycaemia progression, defined as an increase in HbA(1c) of ≥0.5% (5.5 mmol/mol) or intensification of diabetes therapy. Mixed models were used to estimate the effect of atorvastatin on HbA(1c) as a continuous endpoint. RESULTS: Glycaemia progression occurred in 73.6% of participants allocated placebo and 78.1% of those allocated atorvastatin (HR 1.18 [95% CI 1.08, 1.29], p < 0.001) by the end of follow-up. The HR was 1.22 (95% CI 1.19, 1.35) in men and 1.11 (95% CI 0.95, 1.29) in women (p = 0.098 for the sex interaction). A similar effect was seen in on-treatment analyses: HR 1.20 (95% CI 1.07, 1.35), p = 0.001. The net mean treatment effect on HbA(1c) was 0.14% (95% CI 0.08, 0.21) (1.5 mmol/mol). The effect did not increase through time. Diabetes treatment intensification alone did not differ with statin allocation. Neither baseline nor 1-year-attained HbA(1c) predicted subsequent CVD, and the atorvastatin effect on CVD did not vary by HbA(1c) change (interaction p value 0.229). CONCLUSIONS/INTERPRETATION: The effect of atorvastatin 10 mg on glycaemia progression among those with diabetes is statistically significant but very small, is not significantly different between sexes, does not increase with duration of statin and does not have an impact on the magnitude of CVD risk reduction with atorvastatin. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-015-3802-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production

    Get PDF
    NAD+ is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD+ consuming enzymes. NAD+ biosynthesis is required for two different regimens that extend lifespan in yeast. NAD+ is synthesized from tryptophan and the three vitamin precursors of NAD+: nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD+ precursors increases intracellular NAD+ levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD+ metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD+ metabolism by balancing import and export of NAD+ precursor vitamins

    Assembly of α-Glucan by GlgE and GlgB in Mycobacteria and Streptomycetes

    Get PDF
    Actinomycetes, such as mycobacteria and streptomycetes, synthesize α-glucan with α-1,4 linkages and α-1,6 branching to help evade immune responses and to store carbon. α-Glucan is thought to resemble glycogen except for having shorter constituent linear chains. However, the fine structure of α-glucan and how it can be defined by the maltosyl transferase GlgE and branching enzyme GlgB were not known. Using a combination of enzymolysis and mass spectrometry, we compared the properties of α-glucan isolated from actinomycetes with polymer synthesized in vitro by GlgE and GlgB. We now propose the following assembly mechanism. Polymer synthesis starts with GlgE and its donor substrate, α-maltose 1-phosphate, yielding a linear oligomer with a degree of polymerization (∼16) sufficient for GlgB to introduce a branch. Branching involves strictly intrachain transfer to generate a C chain (the only constituent chain to retain its reducing end), which now bears an A chain (a nonreducing end terminal branch that does not itself bear a branch). GlgE preferentially extends A chains allowing GlgB to act iteratively to generate new A chains emanating from B chains (nonterminal branches that themselves bear a branch). Although extension and branching occur primarily with A chains, the other chain types are sometimes extended and branched such that some B chains (and possibly C chains) bear more than one branch. This occurs less frequently in α-glucans than in classical glycogens. The very similar properties of cytosolic and capsular α-glucans from Mycobacterium tuberculosis imply GlgE and GlgB are sufficient to synthesize them both

    Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity

    Get PDF
    Background: The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.&lt;p&gt;&lt;/p&gt; Methods: An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).&lt;p&gt;&lt;/p&gt; Results: An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.&lt;p&gt;&lt;/p&gt; Conclusions: About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’

    risk assessment in pulmonary arterial hypertension insights from the griphon study

    Get PDF
    BACKGROUND Approaches to risk assessment in pulmonary arterial hypertension (PAH) include the noninvasive French risk assessment approach (number of low-risk criteria based on the European Society of Cardiology and European Respiratory Society guidelines) and Registry to Evaluate Early and Long-term PAH Disease Management (REVEAL) 2.0 risk calculator. The prognostic and predictive value of these methods for morbidity/mortality was evaluated in the predominantly prevalent population of GRIPHON, the largest randomized controlled trial in PAH. METHODS GRIPHON randomized 1,156 patients with PAH to selexipag or placebo. Post-hoc analyses were performed on the primary composite end-point of morbidity/mortality by the number of low-risk criteria (World Health Organization functional class I-II; 6-minute walk distance >440 m; N-terminal pro-brain natriuretic peptide RESULTS Both the number of low-risk criteria and the REVEAL 2.0 risk category were prognostic for morbidity/mortality at baseline and any time-point during the study. Patients with 3 low-risk criteria at baseline had a 94% reduced risk of morbidity/mortality compared to patients with 0 low-risk criteria and were all categorized as low-risk by REVEAL 2.0. The treatment effect of selexipag on morbidity/mortality was consistent irrespective of the number of low-risk criteria or the REVEAL 2.0 risk category at any time-point during the study. Selexipag-treated patients were more likely to increase their number of low-risk criteria from baseline to week 26 than placebo-treated patients (odds ratio 1.69, p = 0.0002); similar results were observed for REVEAL 2.0 risk score. CONCLUSIONS These results support the association between risk profile and long-term outcome and suggest that selexipag treatment may improve risk profile
    corecore