11,482 research outputs found

    XMM-Newton observations of three poor clusters: Similarity in dark matter and entropy profiles down to low mass

    Full text link
    (Abridged) We present an analysis of the mass and entropy profiles of three poor clusters (A1991, A2717 and MKW9) observed with XMM-Newton. The clusters have similar temperatures (kT=2.65, 2.53 and 2.58 keV), and similar redshifts (0.04 < z < 0.06). We trace the surface brightness, temperature, entropy and integrated mass profiles up to 0.5 (0.35 for MKW9) of the virial radius (r_200). The integrated mass profiles are very similar in physical units and are reasonably well fitted with the NFW mass model with concentration parameters of c_200=4-6 and M_200=1.2-1.6 X 10^14 h_70^-1 \msun. The entropy profiles are similar at large scale, but there is some scatter in the central region (r<50 kpc). None of the clusters has an isentropic core. Including XMM data on A1983 (kT=2.2 keV), and A1413 (kT = 6.5 keV), we discuss the structural and scaling properties of cluster mass and entropy profiles. The scaled mass profiles display <20% dispersion in the 0.05 - 0.5 r_200 radial range. The c_200 parameters of these clusters, and other values from the literature, are fully consistent with the c_200 - M_200 relation derived from simulations. The dispersion in scaled entropy profiles is small, implying self-similarity down to low mass (kT ~2 keV), and is reduced by 30-40% (to ~20%) if we use the empirical relation S \propto T^0.65 instead of the standard self-similar relation, S \propto T. The mean scaled profile is well fitted by a power law for 0.05 < r_200 < 0.5, with a slope slightly lower than expected from pure shock heating (\alpha = 0.94+/-0.14), and a normalisation at 0.1 r_200 consistent with previous studies. The gas history thus likely depends both on gravitational processes and the interplay between cooling and various galaxy feedback mechanisms.Comment: Final refereed version to appear in A&A. Minor changes. 15 pages, 12 figures (Figs 1 & 3 low res

    Calibration of the galaxy cluster M_500-Y_X relation with XMM-Newton

    Full text link
    The quantity Y_ X, the product of the X-ray temperature T_ X and gas mass M_ g, has recently been proposed as a robust low-scatter mass indicator for galaxy clusters. Using precise measurements from XMM-Newton data of a sample of 10 relaxed nearby clusters, spanning a Y_ X range of 10^13 -10^15 M_sun keV, we investigate the M_500-Y_ X relation. The M_500 - Y_ X data exhibit a power law relation with slope alpha=0.548 \pm 0.027, close to the self-similar value (3/5) and independent of the mass range considered. However, the normalisation is \sim 20% below the prediction from numerical simulations including cooling and galaxy feedback. We discuss two effects that could contribute to the normalisation offset: an underestimate of the true mass due to the HE assumption used in X-ray mass estimates, and an underestimate of the hot gas mass fraction in the simulations. A comparison of the functional form and scatter of the relations between various observables and the mass suggest that Y_ X may indeed be a better mass proxy than T_ X or M_g,500.Comment: 4 pages, 2 figures, accepted for publication in A&

    Molecular Realism in Default Models for Information Theories of Hydrophobic Effects

    Get PDF
    This letter considers several physical arguments about contributions to hydrophobic hydration of inert gases, constructs default models to test them within information theories, and gives information theory predictions using those default models with moment information drawn from simulation of liquid water. Tested physical features include: packing or steric effects, the role of attractive forces that lower the solvent pressure, and the roughly tetrahedral coordination of water molecules in liquid water. Packing effects (hard sphere default model) and packing effects plus attractive forces (Lennard-Jones default model) are ineffective in improving the prediction of hydrophobic hydration free energies of inert gases over the previously used Gibbs and flat default models. However, a conceptually simple cluster Poisson model that incorporates tetrahedral coordination structure in the default model is one of the better performers for these predictions. These results provide a partial rationalization of the remarkable performance of the flat default model with two moments in previous applications. The cluster Poisson default model thus will be the subject of further refinement.Comment: 5 pages including 3 figure

    Final state interactions in two-particle interferometry

    Full text link
    We reconsider the influence of two-particle final state interactions (FSI) on two-particle Bose-Einstein interferometry. We concentrate in particular on the problem of particle emission at different times. Assuming chaoticity of the source, we derive a new general expression for the symmetrized two-particle cross section. We discuss the approximations needed to derive from the general result the Koonin-Pratt formula. Introducing a less stringent version of the so-called smoothness approximation we also derive a more accurate formula. It can be implemented into classical event generators and allows to calculate FSI corrected two-particle correlation functions via modified Bose-Einstein "weights".Comment: 12 pages RevTeX, 2 ps-figures included, submitted to Phys. Rev.

    Construction of Simulation Wavefunctions for Aqueous Species: D3O+

    Full text link
    This paper investigates Monte Carlo techniques for construction of compact wavefunctions for the internal atomic motion of the D3O+ ion. The polarization force field models of Stillinger, et al and of Ojamae, et al. were used. Initial pair product wavefunctions were obtained from the asymptotic high temperature many-body density matrix after contraction to atom pairs using Metropolis Monte Carlo. Subsequent characterization shows these pair product wavefunctions to be well optimized for atom pair correlations despite that fact that the predicted zero point energies are too high. The pair product wavefunctions are suitable to use within variational Monte Carlo, including excited states, and density matrix Monte Carlo calculations. Together with the pair product wavefunctions, the traditional variational theorem permits identification of wavefunction features with significant potential for further optimization. The most important explicit correlation variable found for the D3O+ ion was the vector triple product {\bf r}OD1â‹…_{OD1}\cdot({\bf r}OD2Ă—_{OD2}\times{\bf r}OD3_{OD3}). Variational Monte Carlo with 9 of such explicitly correlated functions yielded a ground state wavefunction with an error of 5-6% in the zero point energy.Comment: 17 pages including 6 figures, typos correcte

    The hot gas content of fossil galaxy clusters

    Full text link
    We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal' clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.Comment: 4 pages, 2 figures. Accepted for publication in A&

    Alternative Size and Lifetime Measurements for High-Energy Heavy-Ion Collisions

    Full text link
    Two-Particle correlations based on the interference of identical particles has provided the chief means for determining the shape and lifetime of sources in relativistic heavy ion collisions. Here, Strong and Coulomb induced correlations are shown to provide equivalent information.Comment: Two confusing typographical errors were correcte

    An XMM-Newton observation of the nova-like variable UX UMa: spatially and spectrally resolved two-component X-ray emission

    Full text link
    In the optical and ultraviolet regions of the electromagnetic spectrum, UX Ursae Majoris is a deeply eclipsing cataclysmic variable. However, no soft X-ray eclipse was detected in ROSAT observations. We have obtained a 38 ksec XMM-Newton observation to further constrain the origin of the X-rays. The combination of spectral and timing information allows us to identify two components in the X-ray emission of the system. The soft component, dominant below photon energies of 2 keV, can be fitted with a multi-temperature plasma model and is uneclipsed. The hard component, dominant above 3 keV, can be fitted with a kT ~ 5 keV plasma model and appears to be deeply eclipsed. We suggest that the most likely source of the hard X-ray emission in UX UMa, and other systems in high mass transfer states, is the boundary layer.Comment: To appear in MNRAS Letter

    Sensitivity of Ag/Al Interface Specific Resistances to Interfacial Intermixing

    Full text link
    We have measured an Ag/Al interface specific resistance, 2AR(Ag/Al)(111) = 1.4 fOhm-m^2, that is twice that predicted for a perfect interface, 50% larger than for a 2 ML 50%-50% alloy, and even larger than our newly predicted 1.3 fOhmm^2 for a 4 ML 50%-50% alloy. Such a large value of 2ARAg/Al(111) confirms a predicted sensitivity to interfacial disorder and suggests an interface greater than or equal to 4 ML thick. From our calculations, a predicted anisotropy ratio, 2AR(Ag/Al)(001)/2AR(Ag/Al)(111), of more then 4 for a perfect interface, should be reduced to less than 2 for a 4 ML interface, making it harder to detect any such anisotropy.Comment: 3 pages, 2 figures, 1 table. In Press: Journal of Applied Physic
    • …
    corecore