7 research outputs found

    Immune Function and Muscle Adaptations to Resistance exercise in Older Adults: Study Protocol for a Randomized Controlled Trial of a Nutritional Supplement

    Get PDF
    BACKGROUND: Immune function may influence the ability of older adults to maintain or improve muscle mass, strength, and function during aging. Thus, nutritional supplementation that supports the immune system could complement resistance exercise as an intervention for age-associated muscle loss. The current study will determine the relationship between immune function and exercise training outcomes for older adults who consume a nutritional supplement or placebo during resistance training and post-training follow-up. The supplement was chosen due to evidence suggesting its ingredients [arginine (Arg), glutamine (Gln), and β-hydroxy β-methylbutyrate (HMB)] can improve immune function, promote muscle growth, and counteract muscle loss. METHODS/DESIGN: Veterans (age 60 to 80 yrs, N = 50) of the United States military will participate in a randomized double-blind placebo-controlled trial of consumption of a nutritional supplement or placebo during completion of three study objectives: 1) determine if 2 weeks of supplementation improve immune function measured as the response to vaccination and systemic and cellular responses to acute resistance exercise; 2) determine if supplementation during 36 sessions of resistance training boosts gains in muscle size, strength, and function; and 3) determine if continued supplementation for 26 weeks post-training promotes retention of training-induced gains in muscle size, strength, and function. Analyses of the results for these objectives will determine the relationship between immune function and the training outcomes. Participants will undergo nine blood draws and five muscle (vastus lateralis) biopsies so that the effects of the supplement on immune function and the systemic and cellular responses to exercise can be measured. DISCUSSION: Exercise has known effects on immune function. However, the study will attempt to modulate immune function using a nutritional supplement and determine the effects on training outcomes. The study will also examine post-training benefit retention, an important issue for older adults, usually omitted from exercise studies. The study will potentially advance our understanding of the mechanisms of muscle gain and loss in older adults, but more importantly, a nutritional intervention will be evaluated as a complement to exercise for supporting muscle health during aging. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT02261961, registration date 10 June 2014, recruitment active

    Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity

    Get PDF
    DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid ("surrogate challenge"). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-gamma production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+T-cells, targeted epitopes at aa 199-220 and aa 528-543. Drug-resistance mutations disrupted the epitope at aa 205-220, while the CTL epitope at aa 202-210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.Funding Agencies|Russian Fund for Basic Research [17-54-30002]; RAS Presidium Program "Molecular and cell biology and post-genome technologies" [01201456591]; Russian Science Foundation [15-15-30039]; EU Twinning project VACTRAIN [692293]; PI project of the Swedish Institute [19806_2016 INNOVIMMUNE]; VACTRAIN [692293]; INNOVIMMUNE; Ministry of Education and Science of the Russian Federation [K2-2016-069]</p
    corecore