1,224 research outputs found

    Stress response during early sedation with dexmedetomidine compared with usual-care in ventilated critically ill patients

    Get PDF
    Background: Sedative agents may variably impact the stress response. Dexmedetomidine is a sympatholytic alpha2-adrenergic agonist mainly used as a second-line sedative agent in mechanically ventilated patients. We hypothesised that early sedation with dexmedetomidine as the primary agent would result in a reduced stress response compared to usual sedatives in critically ill ventilated adults. Methods: This was a prospective sub-study nested within a multi-centre randomised controlled trial of early sedation with dexmedetomidine versus usual care. The primary outcome was the mean group differences in plasma levels of stress response biomarkers measured over 5 days following randomisation. Other hormonal, biological and physiological parameters were collected. Subgroup analyses were planned for patients with proven or suspected sepsis. Results: One hundred and three patients were included in the final analysis. Baseline illness severity (APACHE II score), the proportion of patients receiving propofol and the median dose of propofol received were comparable between groups. More of the usual-care patients received midazolam (57.7% vs 33.3%; p = 0.01) and at higher dose (median (95% interquartile range) 0.46 [0.20–0.93] vs 0.14 [0.08–0.38] mg/kg/day; p < 0.01). The geometric mean (95% CI) plasma level of the stress hormones, adrenaline (0.32 [0.26–0.4] vs 0.38 [0.31–0.48]), noradrenaline (4.27 [3.12–5.85] vs 6.2 [4.6–8.5]), adrenocorticotropic hormone (17.1 [15.1–19.5] vs 18.1 [15.9–20.5]) and cortisol (515 [409–648] vs 618 [491–776)] did not differ between dexmedetomidine and usual-care groups, respectively. There were no significant differences in any other assayed biomarkers or physiological parameters Sensitivity analyses showed no effect of age or sepsis. Conclusions: Early sedation with dexmedetomidine as the primary sedative agent in mechanically ventilated critically ill adults resulted in comparable changes in physiological and blood-borne parameters associated with the stress-response as with usual-care sedation

    The Category of Node-and-Choice Forms, with Subcategories for Choice-Sequence Forms and Choice-Set Forms

    Full text link
    The literature specifies extensive-form games in many styles, and eventually I hope to formally translate games across those styles. Toward that end, this paper defines NCF\mathbf{NCF}, the category of node-and-choice forms. The category's objects are extensive forms in essentially any style, and the category's isomorphisms are made to accord with the literature's small handful of ad hoc style equivalences. Further, this paper develops two full subcategories: CsqF\mathbf{CsqF} for forms whose nodes are choice-sequences, and CsetF\mathbf{CsetF} for forms whose nodes are choice-sets. I show that NCF\mathbf{NCF} is "isomorphically enclosed" in CsqF\mathbf{CsqF} in the sense that each NCF\mathbf{NCF} form is isomorphic to a CsqF\mathbf{CsqF} form. Similarly, I show that CsqFa~\mathbf{CsqF_{\tilde a}} is isomorphically enclosed in CsetF\mathbf{CsetF} in the sense that each CsqF\mathbf{CsqF} form with no-absentmindedness is isomorphic to a CsetF\mathbf{CsetF} form. The converses are found to be almost immediate, and the resulting equivalences unify and simplify two ad hoc style equivalences in Kline and Luckraz 2016 and Streufert 2019. Aside from the larger agenda, this paper already makes three practical contributions. Style equivalences are made easier to derive by [1] a natural concept of isomorphic invariance and [2] the composability of isomorphic enclosures. In addition, [3] some new consequences of equivalence are systematically deduced.Comment: 43 pages, 9 figure

    Designer diatom episomes delivered by bacterial conjugation.

    Get PDF
    Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify a yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.

    Get PDF
    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Forefoot pathology in rheumatoid arthritis identified with ultrasound may not localise to areas of highest pressure: cohort observations at baseline and twelve months

    Get PDF
    BackgroundPlantar pressures are commonly used as clinical measures, especially to determine optimum foot orthotic design. In rheumatoid arthritis (RA) high plantar foot pressures have been linked to metatarsophalangeal (MTP) joint radiological erosion scores. However, the sensitivity of foot pressure measurement to soft tissue pathology within the foot is unknown. The aim of this study was to observe plantar foot pressures and forefoot soft tissue pathology in patients who have RA.Methods A total of 114 patients with established RA (1987 ACR criteria) and 50 healthy volunteers were assessed at baseline. All RA participants returned for reassessment at twelve months. Interface foot-shoe plantar pressures were recorded using an F-Scan® system. The presence of forefoot soft tissue pathology was assessed using a DIASUS musculoskeletal ultrasound (US) system. Chi-square analyses and independent t-tests were used to determine statistical differences between baseline and twelve months. Pearson’s correlation coefficient was used to determine interrelationships between soft tissue pathology and foot pressures.ResultsAt baseline, RA patients had a significantly higher peak foot pressures compared to healthy participants and peak pressures were located in the medial aspect of the forefoot in both groups. In contrast, RA participants had US detectable soft tissue pathology in the lateral aspect of the forefoot. Analysis of person specific data suggests that there are considerable variations over time with more than half the RA cohort having unstable presence of US detectable forefoot soft tissue pathology. Findings also indicated that, over time, changes in US detectable soft tissue pathology are out of phase with changes in foot-shoe interface pressures both temporally and spatially.Conclusions We found that US detectable forefoot soft tissue pathology may be unrelated to peak forefoot pressures and suggest that patients with RA may biomechanically adapt to soft tissue forefoot pathology. In addition, we have observed that, in patients with RA, interface foot-shoe pressures and the presence of US detectable forefoot pathology may vary substantially over time. This has implications for clinical strategies that aim to offload peak plantar pressures

    Built-in and induced polarization across LaAlO3_3/SrTiO3_3 heterojunctions

    Full text link
    Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar \lao ~thin films grown on \sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93 meV/\AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in \sto, illuminating a unique property of \sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
    corecore