229 research outputs found

    A comparison of EEG spectral entropy with conventional quantitative EEG at varying depths of sevoflurane anaesthesia

    Get PDF
    Background and Aim: Recently an electroencephalographic (EEG) spectral entropy module (M-ENTROPY) for an anaesthetic monitor has become commercially available. We compared its performance as an indicator of the state of anaesthesia with that of an older conventional quantitative EEG (QEEG) module (M-EEG) by the same manufacturer (Datex-Ohmeda Division, Instrumentarium Corp., Helsinki, Finland). Methods: There were 40 ASA class I or II subjects, aged between 16-60 years, who underwent elective abdominal surgery. EEG data were collected from the printouts of the respective modules. The data presented here were related to four levels of anaesthesia: Pre-anaesthetic wakefulness (state A), 2% sevoflurane endtidal (ET) concentration after completion of surgery (state B), low ET sevoflurane concentrations (~ 0.5%) just prior to regaining responsiveness (state C), and post-anaesthetic responsiveness (state D). Results: In terms of the prediction probability (Pk statistic), response entropy (RE) and state entropy (SE) produced higher values (0.95-1.0) than the best performing QEEG variable, frontal amplitude (0.86-0.95). Only RE scores did not overlap between states A and B or between B and D. The misclassification of subjects between states C and D was far lower for RE (28%) than for any of the conventional QEEG measures (>90%). Conclusion: In on-line monitoring spectral entropy is superior in distinguishing states of anaesthesia and is also easier to use than conventional QEEG. It is speculated that the artefact rejection strategies accorded spectral entropy might significantly benefit conventional QEEG analysis.Key words: EEG spectral entropy, conventional QEEG, sevoflurane anaesthesiaSouthern African Journal of Anaesthesia & Analgesia Vol. 11 (3) 2005: 89-9

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    Genetic Evidence for the Association between the Early Growth Response 3 (EGR3) Gene and Schizophrenia

    Get PDF
    Recently, two genome scan meta-analysis studies have found strong evidence for the association of loci on chromosome 8p with schizophrenia. The early growth response 3 (EGR3) gene located in chromosome 8p21.3 was also found to be involved in the etiology of schizophrenia. However, subsequent studies failed to replicate this finding. To investigate the genetic role of EGR3 in Chinese patients, we genotyped four SNPs (average interval ∼2.3 kb) in the chromosome region of EGR3 in 470 Chinese schizophrenia patients and 480 healthy control subjects. The SNP rs35201266 (located in intron 1 of EGR3) showed significant differences between cases and controls in both genotype frequency distribution (P = 0.016) and allele frequency distribution (P = 0.009). Analysis of the haplotype rs35201266-rs3750192 provided significant evidence for association with schizophrenia (P = 0.0012); a significant difference was found for the common haplotype AG (P = 0.0005). Furthermore, significant associations were also found in several other two-, and three-SNP tests of haplotype analyses. The meta-analysis revealed a statistically significant association between rs35201266 and schizophrenia (P = 0.0001). In summary, our study supports the association of EGR3 with schizophrenia in our Han Chinese sample, and further functional exploration of the EGR3 gene will contribute to the molecular basis for the complex network underlying schizophrenia pathogenesis

    miR-27b Targets KSRP to Coordinate TLR4-Mediated Epithelial Defense against Cryptosporidium parvum Infection

    Get PDF
    Cryptosporidium is a protozoan parasite that infects the gastrointestinal epithelium and causes a diarrheal disease. Toll-like receptor (TLR)- and NF-κB-mediated immune responses from epithelial cells, such as production of antimicrobial peptides and generation of reactive nitrogen species, are important components of the host's defense against cryptosporidial infection. Here we report data demonstrating a role for miR-27b in the regulation of TLR4/NF-κB-mediated epithelial anti-Cryptosporidium parvum responses. We found that C. parvum infection induced nitric oxide (NO) production in host epithelial cells in a TLR4/NF-κB-dependent manner, with the involvement of the stabilization of inducible NO synthase (iNOS) mRNA. C. parvum infection of epithelial cells activated NF-κB signaling to increase transcription of the miR-27b gene. Meanwhile, downregulation of KH-type splicing regulatory protein (KSRP) was detected in epithelial cells following C. parvum infection. Importantly, miR-27b targeted the 3′-untranslated region of KSRP, resulting in translational suppression. C. parvum infection decreased KSRP expression through upregulating miR-27b. Functional manipulation of KSRP or miR-27b caused reciprocal alterations in iNOS mRNA stability in infected cells. Forced expression of KSRP and inhibition of miR-27b resulted in an increased burden of C. parvum infection. Downregulation of KSRP through upregulating miR-27b was also detected in epithelial cells following LPS stimulation. These data suggest that miR-27b targets KSRP and modulates iNOS mRNA stability following C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general

    Assessing the human immune system through blood transcriptomics

    Get PDF
    Blood is the pipeline of the immune system. Assessing changes in transcript abundance in blood on a genome-wide scale affords a comprehensive view of the status of the immune system in health and disease. This review summarizes the work that has used this approach to identify therapeutic targets and biomarker signatures in the field of autoimmunity and infectious disease. Recent technological and methodological advances that will carry the blood transcriptome research field forward are also discussed

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    On the Rise of the Proton Structure Function F2_2 Towards Low x

    Get PDF
    A measurement of the derivative (d ln F_2 / d lnx)_(Q^2)= -lambda(x,Q^2) of the proton structure function F_2 is presented in the low x domain of deeply inelastic positron-proton scattering. For 5*10^(-5)=1.5 GeV^2, lambda(x,Q^2) is found to be independent of x and to increase linearly with ln(Q^2)

    Epigenetic activities of flavonoids in the prevention and treatment of cancer

    Get PDF
    corecore