119 research outputs found

    Cost-effectiveness of a novel lipoarabinomannan test for tuberculosis in patients with HIV

    Get PDF
    BACKGROUND: A novel urine lipoarabinomannan assay (FujiLAM) has higher sensitivity and higher cost than the first-generation AlereLAM assay. We evaluated the cost-effectiveness of FujiLAM for tuberculosis testing among hospitalized people with HIV irrespective of symptoms. METHODS: We used a microsimulation model to project clinical and economic outcomes of three testing strategies: 1) sputum Xpert MTB/RIF (Xpert); 2) sputum Xpert plus urine AlereLAM (Xpert+AlereLAM); 3) sputum Xpert plus urine FujiLAM (Xpert+FujiLAM). The modelled cohort matched that of a two-country clinical trial. We applied diagnostic yields from a retrospective study (yields for Xpert/Xpert+AlereLAM/Xpert+FujiLAM among those with CD4<200/µL: 33%/62%/70%; among those with CD4≥200/µL: 33%/35%/47%). Costs of Xpert/AlereLAM/FujiLAM were USD15/3/6 (South Africa) and USD25/3/6 (Malawi). Xpert+FujiLAM was considered cost-effective if its incremental cost-effectiveness ratio (USD/year-of-life saved) was <940(SouthAfrica)and<940 (South Africa) and <750 (Malawi). We varied key parameters in sensitivity analysis and performed a budget impact analysis of implementing FujiLAM countrywide. RESULTS: Compared with Xpert+AlereLAM, Xpert+FujiLAM increased life expectancy by 0.2 years for those tested in South Africa and Malawi. Xpert+FujiLAM was cost-effective in both countries. Xpert+FujiLAM for all patients remained cost-effective compared with sequential testing and CD4-stratified testing strategies. FujiLAM use added 3.5% (South Africa) and 4.7% (Malawi) to five-year healthcare costs of tested patients, primarily reflecting ongoing HIV treatment costs among survivors. CONCLUSIONS: FujiLAM with Xpert for tuberculosis testing in hospitalized people with HIV is likely to increase life expectancy and be cost-effective at the currently anticipated price in South Africa and Malawi. Additional studies should evaluate FujiLAM in clinical practice settings

    Emergence of structural and dynamical properties of ecological mutualistic networks

    Full text link
    Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants plays a key role in the organization of ecological communities. Such networks in ecology have generically evolved a nested architecture independent of species composition and latitude - specialists interact with proper subsets of the nodes with whom generalists interact. Despite sustained efforts to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus. Here we demonstrate that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, as also the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by an amount that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, while remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we analytically show that the abundance of the rarest species is directly linked to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks.Comment: 10 pages, 4 figure

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Gene expression analysis indicates CB1 receptor upregulation in the hippocampus and neurotoxic effects in the frontal cortex 3 weeks after single-dose MDMA administration in Dark Agouti rats.

    Get PDF
    BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions, impairments frequently described in heavy MDMA users. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the effects of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the upregulation of the CB1 cannabinoid- and Epha4, Epha5, Epha6 ephrin receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation/synaptic reorganization in the frontal cortex three weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is suggested by the data, which underlines the particular vulnerability of this brain region after the drug treatment. Finally, our results also suggest the substantial contribution of CB1 receptor and endocannabinoid mediated pathways in the hippocampal impairments. Taken together the present study provides evidence for the participation of new molecular candidates in the long-term effects of MDMA

    Enrichment of Omnivorous Cercozoan Nanoflagellates from Coastal Baltic Sea Waters

    Get PDF
    Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02) to experimental food web manipulation in samples from the Gulf of Gdańsk (Southern Baltic Sea). Seawater was either prefiltered through 5 µm filters to exclude larger predators of nanoflagellates (F-treatment), or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment) to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of Gdańsk might also be related to their vulnerability to grazing pressure

    Frequent CEO Turnover and Firm Performance: The Resilience Effect of Workforce Diversity

    Get PDF
    © 2020, Springer Nature B.V. CEO turnover (or succession) is a critical event in an organization that influences organizational processes and performance. The objective of this study is to investigate whether workforce diversity (i.e., age, gender, and education-level diversity) might have a resilience effect on firm performance under the frequency of CEO turnover. Based on a sample of 409 Korean firms from 2010 to 2015, our results show that firms with more frequent CEO turnover have a lower firm performance. However, firms with more gender and education-level diversity could buffer the disruptive effect of frequent CEO turnover on firm performance to offer a benefit to the organization. Our theory and findings suggest that effectively managing diverse workforce can be a resilience factor in an uncertain organizational environment because diverse workforce has complementary skills and behaviors that can cope better with uncertainty and signals social inclusion of an organization, thus fostering a long-term exchange relationship. These findings contribute to the literature on CEO turnover (or succession) and diversity

    The spatial scaling of species interaction networks

    Get PDF
    International audienceSpecies-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world
    corecore