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Abstract
Any given research claim can be made with a degree of confidence that a phenom-
enon is present, with an estimate of the precision of the observed effects and a
prediction of the extent to which the findings might hold true under different
experimental or real-world conditions. In some situations, the certainty and preci-
sion obtained from a single study are sufficient reliably to inform future research
decisions. However, in other situations greater certainty is required. This might be
the case where a substantial research investment is planned, a pivotal claim is to be
made or the launch of a clinical trial programme is being considered. Under these
circumstances, some form of summary of findings across studies may be helpful.

Summary estimates can describe findings from exploratory (observational) or
hypothesis testing experiments, but importantly, the creation of such summaries
is, in itself, observational rather than experimental research. The process is
therefore particularly at risk from selective identification of literature to be
included, and this can be addressed using systematic search strategies and
pre-specified criteria for inclusion and exclusion against which possible
contributing data will be assessed. This characterises a systematic review
(in contrast to nonsystematic or narrative reviews). In meta-analysis, there is an
attempt to provide a quantitative summary of such research findings.
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1 Principles of Systematic Review

1. Search strategy: the objective is to identify all possible sources of relevant
information, so that they can contribute to the research summary. Informal
searches have a number of weaknesses:
(a) There is a risk of the preferential identification of work in high-impact

journals. We know that the quality of work published in such journals is no
higher than that in the rest of the literature and that a premium on novelty
means that the findings in such journals tend to be more extreme than in other
journals. This has been shown, for instance, in gene association studies in
psychiatry (Munafo et al. 2009).

(b) While English is still, largely, the language of science, searches which are
limited to the English language literature will miss those studies published in
other languages. For research conducted in countries where English is not the
first language, there is likely to be a difference in the “newsworthiness” of
work published in the English literature compared with the domestic litera-
ture, with work published in English being unrepresentative of the whole.

(c) Where there is not a clear articulation of inclusion and exclusion criteria, de
facto judgements may be made about eligibility based on convenience or
information source, and eligibility criteria may drift with emerging under-
standing of the literature. This is essentially a data-led approach, and while it
is sometimes appropriate, it needs to be apparent.

(d) There should be articulation in advance of the research types to be included.
Should conference abstracts be considered? In spite of their brevity, they do
sometimes include sufficient information to contribute outcome data to meta-
analysis. There is an increasing pre-peer-reviewed literature, most notably
bioRxiv, often described in as much detail as a formal journal paper.
Reviewers should decide this in advance, and in general in fast-moving
fields, it is preferable to consider both of these sources if possible.

(e) This decision also has implications for the number of databases to be
searched. PubMed is easy to use, is widely accessible and provides good
coverage of much of the published literature. However, conference abstracts
and preprints are not reliably retrieved, and if these are important, then the
use of, for instance, EMBASE and Google Scholar, or perhaps direct
searching within bioRxiv, is preferred. Importantly, the Google Scholar
algorithm is based in part on that user’s search history and will differ between
individuals. Therefore, while potentially useful, it does not provide a repro-
ducible search strategy and should not be used as the main or only search
engine. As registries of animal experiments become more widely used,
searching of these may provide useful information about the proportion
of studies which have been initiated but not (at least not yet) published.
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The SRA-polyglot tool (http://crebp-sra.com/#/polyglot) developed by the
Bond University Centre for Research in Evidence-Based Practice allows the
syntax of search strings to be converted between the requirements of several
different databases.

2. Deduplication
(a) Where more than one database is searched, it is inevitable that some articles

will appear in more than one search result, and it is important to identify such
duplication. The earliest this can be done, the more work is saved; and in
some large multi-author reviews, duplicate publications may persist to very
late stages of the review. Bibliographic software such as EndNote has
deduplication facilities which require manual curation, as does the
SRA-dedupe tool developed by the Bond University Centre for Research in
Evidence-Based Practice. However, emerging experience in our group
suggests that completely automated deduplication may be achieved with a
high degree of precision using the RecordLinkage (https://cran.r-project.org/
web/packages/RecordLinkage/index.html) R package with additional filters
built into the code to maximise the number of duplicates detected without
removing false duplicate records.

3. Protocol registration (PROSPERO) and publication
(a) Systematic review is observational research. There is opportunity therefore

for hypothesising after results are known (“HARKing”) – that is, for the
intention of the study to be changed in the light of observed data, with a claim
made, the data supported what the investigators had been looking for all
along, and for flexibility in data analysis (choosing the analysis technique
that delivers p < 0.05), and for shifts in the entire purpose of the study. Say,
for example, we were interested in the effect of maternal deprivation in the
first trimester on blood pressure in adult offspring, but found many more
studies using maternal deprivation in the third trimester and switched to
studying that. These flexibilities increase the risk of identifying spurious
associations and devalue the findings of systematic review. Researchers
should articulate, in advance, the population to be studied, the hypothesis,
the intervention of interest, the statistical analysis plan and the primary
outcome measure. These should be recorded in a registry such as PROS-
PERO, which has a dedicated platform for reviews of animal studies (https://
www.crd.york.ac.uk/prospero/#guidancenotes_animals).

(b) For more complex reviews, it may be worth considering publication of a
protocol manuscript, giving the opportunity to articulate in greater detail the
background to the study and the approach to be used; and some journals have
adopted the Registered Reports format, where the protocol is reviewed for
methodological quality, with an undertaking to accept the final manuscript
regardless of results, as long as the methodology described in the protocol
has been followed (see https://cos.io/rr for further discussion).

4. Ensuring reviews are up to date
(a) Depending on the resources available, systematic reviews may take as much

as 2 years to complete. Given the pace of scientific publication, this means

Design of Meta-Analysis Studies

http://crebp-sra.com/#/polyglot
https://cran.r-project.org/web/packages/RecordLinkage/index.html
https://cran.r-project.org/web/packages/RecordLinkage/index.html
https://www.crd.york.ac.uk/prospero/#guidancenotes_animals
https://www.crd.york.ac.uk/prospero/#guidancenotes_animals
https://cos.io/rr


that the findings may be out of date before the review is even published. One
approach is to update the search once data extraction from the originally
identified studies is complete, but this should be performed before any data
analysis, and the intention to update the search, perhaps conditional on the
original search being above a certain age, should be articulated in a study
protocol.

(b) An alternative approach is to conduct a living systematic review (Elliott et al.
2017). In this the intention is that the review is continually updated as new
information becomes available. Automation of many of the key steps means
that much of this can be done in the background, with little human interven-
tion required (Thomas et al. 2017). At present the critical stage which resists
automation is the extraction of outcome data, but even here the use of
machine assistance may have much to offer; a pilot study suggests time
saving of over 50% in data extraction, with gains in accuracy (Cramond
et al. 2018). It is now possible to imagine completely automated living
reviews, right through to a continually updated web-based dissemination of
review findings.

(c) Such reviews raise important issues about statistical analysis and versions of
record. For the former, the concern is that sequential statistical analysis of an
enlarging dataset raises the false discovery rate. The problem is similar to
those encountered in interim analyses in clinical trials, but because data
might continue to accumulate indefinitely, approaches such as alpha spend-
ing used in clinical trials would not be appropriate. Possible approaches
include either adopting a Bayesian approach, with priors informed by the
first formal meta-analysis, or a rationing of formal statistical testing at
milestones of data accumulation, for instance, with each doubling of the
amount of data available (Simmonds et al. 2017).

(d) For a version of record, there needs to be a persisting digital identifier, with
the possibility to recreate the data which contributed to that analysis. One
approach would be to allow research users to create a snapshot of the
analysis, with its own DOI and linked public domain data repository, with
the snapshot labelled to indicate findings from the last formal statistical
analysis and with the informal updated analysis. This would provide trans-
parency to the provenance of the claims made.

5. Machine learning for citation screening
(a) Any bibliographic search represents a compromise between sensitivity and

specificity – a highly sensitive search will identify all relevant studies and
many more which are irrelevant; and attempts to increase specificity reduce
sensitivity. For most systematic reviews, the proportion of relevant search
results is around 10–20%. For some reviews, particularly “broad and shal-
low” reviews or living reviews, the work required in screening citations can
be substantial. For instance, our search for a review of the animal modelling
of depression returned more than 70,000 “hits”, and one for the modelling of
Alzheimer’s disease returned over 260,000 “hits”. In such cases the burden of
human screening is prohibitive.
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(b) The task of identifying citations is well suited to machine learning. Essen-
tially an automated tool extracts features from the text such as word fre-
quency and topics described, determines the representation of these features
in a learning set of included versus excluded citations and makes a prediction
of the probability that any given citation should be included. This can then be
tested in a validation set and the sensitivity and specificity of various cut-off
scores determined. By varying the cut-off score, the user can choose the
levels of sensitivity and specificity which best meets their needs. Our practice
is to choose the cut-off which provides sensitivity of 95% (roughly equiva-
lent to human screening) and to observe the sensitivity achieved. If this is not
sufficient, we increase the size of the training set in an attempt to secure better
performance.

(c) There is a further elaboration to improve performance. Although the training
sets have usually been defined through dual screening (i.e. two humans have
independently adjudicated the citation, and disagreements have been
reconciled by a third screener), errors still occur. Such errors pollute the
training sets and reduce machine performance. Citations in the training set
where there is greatest mismatch between human decision and machine
prediction are those most likely to represent human errors, and so identifying
these for further human screening to identify errors leads to improved
performance – in the depression example (Bannach-Brown et al. 2019),
increasing sensitivity from 86.7% to 88.3% while achieving sensitivity of
98.7%, resulting in a reduction in the burden of screening of over 1,000
citations.

6. Text mining to partition and annotate the literature
(a) Particularly in a broad and shallow review, there is often a need to categorise

studies according to the disease model, the experimental intervention or the
outcome measure reported. In all reviews, it may be helpful to annotate
studies according to the reporting of measures – such as blinding or
randomisation – which might reduce the risk of bias. This can be done either
on title and abstract only or can consider the full text if this is available. The
basic approach is to use a dictionary-based approach, determining the fre-
quency with which a specific word or phrase appears. In our experience, this
is usually sufficient for disease model, experimental intervention and the
outcome measure reported – probably because there is a very limited number
of ways in which such details are reported. Annotation for risks of bias is
more challenging, because there are more ways in which such details can be
described. More sophisticated textual analysis using regular expressions –

where a word or phrase is detected in proximity to (or without proximity to)
other words or phrases – can be used to detect the reporting of, for instance,
blinding and randomisation, with a reasonable degree of precision (Bahor
et al. 2017). However, performance at the level of the individual publication
is not perfect, and access to full text is required. In the clinical trial literature,
tools using more sophisticated machine learning approaches have been
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described (Marshall et al. 2016), and we and others are currently exploring
the performance of similar approaches to the in vivo literature.

7. Wide and shallow reviews and narrow and deep reviews
(a) Reviews can serve diverse purposes, from the very focussed investigation of

the effect of a specific drug on a specific outcome in a specific disease model
to more broad ranging reviews of a field of research. It is usually too
burdensome for a review to be both wide and deep, but wide and shallow
reviews can serve important purposes in describing a field of research;
reporting the range of outcomes reported, drugs tested and models employed;
and reporting of risks of bias, without a detailed meta-analysis. These can be
critically important in designing future research questions, for instance, in
determining priorities for future narrow and deep reviews. Indeed, by making
available datasets from wide and shallow reviews with living searches,
machine learning for citation screening and text mining to identify drugs
and models of interest in “Curated current contents” (see below), these
reviews can be a launch pad for those wishing to conduct narrow and deep
reviews in particular areas, with much of the burden of searching and citation
screening already performed.

2 Principles of Meta-Analysis

1. Measures of effect size
(a) Usually we are interested in measuring differences in outcomes between two

or more experimental cohorts. This might be a difference in, for instance,
infarct volume in an animal model of stroke, or of cognitive performance in
animal models of dementia, or of ejection fraction in animal models of
myocardial ischaemia. It is very unusual for the outcome measure used to
function as a ratio scale across the different experimental designs presented
(a 5 mm3 reduction in infarct volume has very different meaning in a mouse
compared with a rat or a cat), and so simply taking the raw outcome measure
is seldom appropriate.

(b) Another approach is to calculate a “standardised mean difference” (SMD),
where the difference is expressed as a proportion of the pooled standard
deviation (Cohen’s D), sometimes with a correction factor to account for
small group sizes (Hedges G). If groups are large enough, the measured
pooled standard deviation reflects the underlying biological variability in the
phenomenon under study and is independent of the scale used; it can
therefore be used to convert between scales. For example, if the variation
in daily temperature recordings is 3.6�F and is also 2.0�C, then we can
establish that 1.8�F ¼ 1.0�C.

(c) However, when group size is smaller, the measured pooled standard devia-
tion reflects both underlying variability and a measurement error. In a simple
simulation of 100 control groups with 10 animals each, the observed standard
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deviation ranged from 51% to 172% of the modelled value, giving substantial
imprecision if this was used as the yardstick to scale the effect size (unpub-
lished simulation).

(d) An alternative approach is to calculate a “normalised mean difference”
(NMD) by mapping the observed outcomes onto a ratio scale where 0 is
the outcome expected from an unlesioned, normal animal and 1 is the
outcome observed in a lesioned, untreated animal (usually the control
group). The effect size can then be expressed as the proportional or percent-
age improvement in the treatment group, with a pooled standard deviation on
the same scale derived from that observed in the treatment and control
groups. So a drug that reduced infarct volume in a rat from 300 to
240 mm3 would be considered to have the same magnitude of effect as one
that reduced infarct volume in a mouse from 25 to 20 mm3.

(e) This NMD approach also has shortcomings. Firstly, although some outcome
measures such as infarct volume appear as a ratio scale, the range of possible
infarct volumes in a rat has a minimum at zero and a maximum at the volume
of the intracranial cavity, so we expect floor and ceiling effects. Secondly,
many behavioural outcomes are measured on scales which are ordinal rather
than interval or ratio scales, where parametric approaches are considered less
appropriate. Finally, this approach can only be used where outcome in
non-lesioned (“normal”) animals is either presented or can be inferred – for
some outcomes (e.g. spontaneous motor activity), these data may not be
available. Also, if the purpose is to summarise the impact of disease
modelling rather than of the effect of an intervention in a disease model,
the NMD approach is not possible.

(f) Nonetheless, where an NMD approach is possible, it is preferred. It has fewer
relevant weaknesses than the alternative approaches, and it is a more power-
ful approach when you are interested in identifying differences between
groups of studies (see Sect. 3).

2. Giving different studies different weights
(a) The calculation of a summary estimate of effect could be as simple as

presenting the median observed effect or a mean value from the observed
effects. However, this approach would give the same weight to small and
large studies, to precise and imprecise studies.

(b) To address this, meta-analysis adjusts the weight which each study is given.
In the simplest approach, studies are weighted according to the inverse of
their observed variance. More precise studies – and this will generally also be
the larger studies – are accorded greater importance than imprecise (usually
smaller) studies. This is termed “fixed effects meta-analysis” and is appropri-
ate where all studies are essentially asking the same question – we expect the
differences between studies to be due simply to sampling error and that the
true underlying results of these studies are the same.

(c) In reviews of animal studies, it is unusual for this to be the case; drugs are
tested in different species, at different doses, in models of different severities
and at different times in relation to when disease modelling was initiated.
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We are therefore not so much interested in an “average” effect, but rather in
how the observed effect varies under different circumstances. The true
underlying results of included studies are likely to be different.

(d) To account for this, we can use random effects meta-analysis. Here the
principle is that we make a statistical observation of the differences between
studies (the heterogeneity) and compare this to the differences expected if the
studies were all drawn from the same population (i.e. if all the observed
variation was within studies). The difference between these estimates is the
between-study variability, expressed as τ2 (“tau squared”). Studies are then
weighted by the inverse of the variance within that study and the between-
study variance τ2. Because τ2 is constant across studies, if there is large
between-study variation, this contributes a major, fixed component of study
weights; and so the meta-analysis becomes more like a simple average.
Where τ2 is measured as zero, the meta-analysis behaves as a fixed effects
meta-analysis.

(e) Importantly, the choice between fixed and random effects approaches should
be made in advance, on the basis of investigator expectations of whether they
expect there to be differences in true effect sizes between studies, rather than
being decided once the data have been collected.

3. Establishing differences between studies
(a) As discussed above, the primary purpose of meta-analyses of in vivo data is

not to come to some overall estimate of effect, but rather to gain a better
understanding of differences in effect size between different types of studies.
There are a number of approaches to this. Firstly we will outline these
different approaches and then consider the strengths and weaknesses of each.

(b) Partitioning heterogeneity: In this approach, the overall heterogeneity
between studies is calculated as the weighted sum of the squared deviations
from the fixed effects estimate. The studies are then divided (partitioned)
according to the variable of interest, and meta-analysis is performed within
each group. From this we calculate the within-group heterogeneity as the
weighted sum of the squared deviations from the fixed effects estimate within
that group. We can then add together all of these “within-group
heterogeneities” and subtract this from the overall heterogeneity. What
remains, the between-group heterogeneity, is interpreted as the differences
which are “explained” by our partitioning, and the significance of such
differences can be tested using the χ2 (“chi squared”) statistic with n�1
degrees of freedom, where n is the number of partitions.

(c) Univariate meta-regression: Here we seek to model observed outcome (the
dependent variable) in a simple regression equation. Firstly, we label each
study for its status for the category of interest. Where this is a binary variable
(present or absent), studies are labelled 0 or 1. For continuous variables such
as weight, dose or time, it may be appropriate to offer these directly to the
model, if you consider the response will be linear (or could be transformed to
a linear response) or you could divide the studies into categories, for instance,
in tertiles or quartiles of the distribution of values. For these and other
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categorical variables, we then create a series of dummy variables where each
value of the category is either present or absent. With this approach we have
redundant information – if there are three categories, and a study does not
belong to A or B, it must belong to category C. It is our practice to censor the
category which is the largest and to consider these as a reference category
included in the baseline (and accounted for in the constant term (β0) of the
regression equation).

(d) Univariate meta-regression is essentially a linear regression, except that the
best fitting model is chosen based on the minimisation of the weighted
deviations from the model, with weights calculated as described above – so
more precise studies are given greater weight. The constant (β0) is an estimate
of the treatment effect in the base case (usually describing the most com-
monly observed value for the category in question), and the other
β-coefficients give an estimate of the different efficacies observed for other
values of the category being studied). These coefficients are reported with
their standard errors, from which it is possible to determine whether the
coefficient is significantly different from zero. Most software packages (such
as R metafor and STATA metareg) are also able to provide 95% confidence
intervals for efficacy according to each of the modelled values within the
category.

(e) Multiple meta-regression: In this extension, instead of one variable being
offered, multiple variables can be offered simultaneously. As with other
regression approaches, this can be done with unselected variables or with
variables selected following univariate meta-regression, and it is possible to
include interaction terms if this is desired. There is much discussion about
both the number of instances of a variable within a category required for valid
analysis and the number of categories which might be included. Having a
small number of variables within a category will lead to imprecision in the
estimate of the β-coefficient, but otherwise is unlikely to have deleterious
consequences. For the number of variables which might be modelled, there is
a general consensus that this should be no more than 10% of the number of
observations, although the provenance of this recommendation is unknown
to us.

(f) Tools: Most software packages have packages developed to support these
approaches. The flexibility of R, and in particular the ability to embed R code
within shinyapps, makes this a particularly attractive approach, and our
shinyapp, developed to support the SyRF platform, is available at https://
camarades.shinyapps.io/meta-analysis-app-syrf/.

(g) Choosing the best approach: Meta-analysis is a well-established technique,
and many books and guides (e.g. the Cochrane Handbook, https://training.
cochrane.org/handbook) are available. However, there are important
differences between datasets derived from human clinical trials and those
from animal studies. Broadly, human reviews include a relatively small
number of studies each including a large number of subjects, addressing a
reasonably well-focussed question. There may be substantial heterogeneity
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of subjects (different ages, sex, disease severity, geographical location,
treatment centre) within a single study. In contrast, in animal reviews, there
are usually a large number of individually small studies, and there may be
much less focus (different drug doses because investigators have studied
dose-response relationship, different stages or severity of disease, different
species, different disease models, different outcome measures). Within each
study, however, there is less heterogeneity, often sung animals of the same
sex, age and weight of identical genetic background kept in the same cages
on the same diet and undergoing identical study-related procedures.

It turns out these differences affect the performance of the statistical
approaches used. Firstly, SMD estimates of effect size are less precise, as
discussed in 1(c) above. In estimating the overall effect, NMD estimation of
effect size has substantially greater power.

As well as having an impact on the effect size, this also has an impact on
the attributed weight; studies which (through sampling error) have
underestimated variance are given too much weight and (because calculated
heterogeneity is the weighted squared deviation from the fixed effects esti-
mate) contribute disproportionately to the observed heterogeneity. Following
partitioning, the fixed effects estimate within that partition will move sub-
stantially towards overweighted studies (because they carry so much weight),
and the within-group heterogeneity will fall substantially as a result.

(h) This gives a large artefactual increase in the between-study heterogeneity,
which results in false-positive test of significance. In simulation studies we
have recently shown that this false-positive rate, for NMD estimates of effect
size, is over 50% (Wang et al. 2018). SMD is not affected to quite the same
extent, but the power of that approach is limited. In contrast, in those
simulations, both univariate and multivariable meta-analyses have acceptable
false-positive rates (at around the expected level of 5%); and here the power
of the NMD approach is again higher than SMD approaches (Wang et al.
2018).

(i) However, for reasons given above, it may not always be possible to calculate
NMD effect sizes, and insistence on this approach would lead to exclusion of
some studies. The best approach here depends on the number and the
proportion of studies which would have to be excluded; if this number is
less than around 30% of the total, and the studies to be excluded are in other
respects typical of the included studies, then exclusion with NMD analysis
provides greater statistical power. If however more than 30% of studies
would be excluded, or these studies have specific features of interest not
represented elsewhere in the dataset, it may be better to accept some diminu-
tion of power.

4. Approaches to identifying publication bias
(a) The Soviet Union had two key newspapers, Izvestia and Pravda. An old

Russian joke held that Izvestia meant “News” and Pravda meant “Truth”,
and that meant there was no truth in Izvestia and no news in Pravda. The
scientific literature is similarly afflicted by a focus on things which are
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newsworthy, but not necessarily true. Because our experiments (biases in the
underlying study designs notwithstanding) sample underlying truth, our
experiments are approximations to that truth. The results of our sampling
are likely to follow a normal distribution, with some overstating and some
understating the observed effect and most being about right. If our publica-
tion model only communicates a subset of our experimental results –

selected, for instance, on the basis of statistical “significance” – then the
literature will mislead. Rosenthal described this as the file drawer problem,
where the 5% of studies which were falsely positive were in the journals and
the 95% which were truly negative were in the file drawers of the
investigators. His statement contains a latent suggestion that the problem
may be due as much to investigators not seeking publication, rather than
journals rejecting neutral or negative findings. Certainly, there is evidence
from human clinical trials that this may be the case (Chan et al. 2014).

(b) In meta-analysis, we have the advantage of seeing a collection of
publications rather than a single publication. If there is an underlying effect,
we would expect to see a distribution of estimates around that true underlying
effect, with more precise studies giving estimates closer to the true effect and
less precise studies giving more variable estimates. A funnel plot is a
graphical representation of effect size plotted against a measure of precision,
and asymmetry is suggestive of “small study” effects, which include but are
not limited to publication bias. As well as visual inspection, it is possible to
analyse this mathematically using either Egger regression or the iterative
“trim and fill” approach.

(c) Each of these approaches requires using a measure of precision, and because
SMD effect size estimates are based in part on a consideration of precision,
this leads to constraints in the possible values represented in a funnel plot
determined in part by the number of subjects in each study. In clinical
research this “n” is highly variable, and so few studies have the exact same
n. In contrast, most animal studies are small, and many studies will have the
same number of subjects. This leads to funnel plots showing studies with the
same “n” describing curves easily seen in visual inspections. Analysis of
several existing datasets using both SMD and NMD approaches and simula-
tion studies modelling the presence of publication bias approaches have
shown significant publication bias is more frequently found with SMD
(rather than NMD) estimates of effect size. The simulation studies suggested
that this was due to increased false-positive results with SMD analysis
(Zwetsloot et al. 2017), and the authors suggested that, if it is not possible
to use NMD effect size estimates, alternative measure of precision such as the
square root of the number of experimental subjects should be used instead.

(d) Selective outcome reporting bias: Unlike human clinical trials publications,
most publications describing in vivo research report findings from more than
one experimental cohort, and – like human studies – they often describe more
than one outcome from each cohort or the same outcome measured at
different times. This gives substantial opportunities for selective reporting
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of outcome data and is a main factor in recommendations that ex ante study
protocols should specify which outcome measure will be considered the
primary yardstick of success or failure and a listing of all the outcomes
which will be measured.

The extent of such selective outcome reporting can be estimated by
seeking evidence of an excess of significant studies. Essentially the approach
is to establish an overall measure of effect, to then estimate, based on the
characteristics of identified studies, the number of positive studies one would
expect to observe and then to compare this to the number of positive studies
actually observed. Any excess significance might be due to data coercion in
individual experiments (asymmetric exclusion of outliers, flexibility in sta-
tistical tests applied) or to the selective non-reporting of outcomes which do
not reach statistical significance. Tsilidis et al. have applied this approach to
the in vivo neuroscience literature (Tsilidis et al. 2013) and suggest that in
some fields, up to 75% of experimental outcomes may be unreported.

5. How complete are the data?
Useful biomedical research informs either further research or policy decisions.

Further research may involve seeking to apply the findings in a different research
domain, for instance, where findings from in vivo research provide motivation for
a human clinical trial. This is conventionally called “translational research”.
Alternatively, if there are not yet sufficient data to support such translation,
there may be motivation to conduct further research in the same domain, which
one might term “cis-lational research”, or to decide that further research is likely
to be fruitless. Getting these decisions right is critical and depends not only on the
findings of individual experiments but also on an assessment of the “maturity”,
the completeness of the data portfolio being assessed. There are of course no
precise boundaries, but in principle at least it should be possible to predict the
chances of successful translation or of appropriate discontinuation. This might
allow more rational research investment decisions to be made. The thresholds of
evidence required for translation or discontinuation will of course differ
according to circumstance; a lower threshold for translation would be appropriate,
for instance, for the development of a treatment for Ebola virus infection than for
the common cold.

To date, we have not had the tools to allow a quantitative assessment of a data
portfolio against these thresholds, and such decisions have been largely qualita-
tive, based instead on habit, experience and expert opinion. However, systematic
review and meta-analysis are beginning to offer novel approaches. The optimal
approach is not yet clear, but in our reviews both of tissue plasminogen activator
(tPA) and of hypothermia in focal cerebral ischaemia, we have mature datasets,
developed because investigators have been interested either in the effectiveness
of co-treatments or where these interventions have been used as a positive
control.
(a) Assessing the impact of known variables of interest and their beta

coefficients: In some fields there is reasonably clear consensus around a
range of circumstance under which efficacy should be observed in animal
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studies to justify attempted translation to human clinical trials. For instance,
the stroke community, in the Stroke Therapy Academic Industry Roundtable
(STAIR), suggested that efficacy be observed in more than one species, for
both structural (infarct volume) and functional (neurobehavioral) outcomes,
in animals with comorbidities (STAIR 1999). Using meta-regression it is
possible to go beyond the basic requirement that efficacy be observed in such
circumstances, to consider also the precision of the estimate of efficacy in
each species, for both structural and functional outcomes, for animals with
comorbidities and so on. This can be established using meta-regression, the
factor of interest being the precision of the estimates of the beta coefficients
for each of these features. For instance, it might be considered desirable that
the impact of co-morbidity be estimated to within a 5% difference in infarct
volume.

(b) The precision of the estimate of the impact of species on the efficacy of tPA
in reducing infarct volume changed over time, increasing as more
experiments were available for analysis. The figure shows the precision of
the estimate of effect in different species and how this changed as the
literature grew. For simplicity we show the estimates when 25, 50, 75%
and all of the data (by date of publication) were included. If it were consid-
ered important to have a precise estimate of efficacy in primates, then further
experiments are required. If knowing the difference between rats and mice is
all that is important, then the data for species can be considered mature
(Fig. 1).

(c) Total variability and marginal change in τ2: We know that, even when
offered a large number of potential independent variables, meta-regression
is able to explain only a modest proportion of the observed variability. We
consider that this is due to the impact of other variables which might either be

Fig. 1 Increasing precision in estimating the impact of species: because tPA is often tested in
combination with other drugs, the literature is particularly mature. This allows us to observe
changes in the precision of the estimation of the impact of the species of the experimental animal
(the inverse of the standard error of the beta coefficient derived from meta-regression) as the amount
of available data grows. In the figure we show precision after 75, 150 and 225; and finally the
complete set of 301 experiments were available for analysis
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latent (unreported or unknown to the investigators) or too sparsely
represented to be sampled (for instance, between-lab effects). Under these
circumstances, it would be interesting to know whether an additional experi-
ment would add valuable new information or whether the data can be
considered complete.

(d) As discussed above, the between-study differences are measured using a
statistic called τ2, for which different measures are available. The computa-
tionally simplest approach is the DerSimonian and Laird estimator. This is
derived from the observed Cochrane’s Q and gives an estimate of the
heterogeneity adjusted for the number of observations. However, it tends to
give biased estimates when sample size is small, and alternative approaches
such as restricted maximum likelihood (REML) are now widely available
and are probably more appropriate in the context of meta-analysis of animal
data.

(e) When the evidence in support of a hypothesis is immature, we expect that
additional experiments – through deliberate or accidental differences in the
circumstance of testing – will add to the value of τ2. Conversely, when a field
is mature, additional experiments will add little useful additional information
and will not increase the observed τ2. We can therefore track – again using
the tPA and hypothermia datasets described above – how τ2 changes as new
studies are added.

(f) When we do this, an interesting biphasic pattern emerges. At first there is a
rapid increase in observed τ2, followed by a decline, followed by another
increase (although not to the same peak as the first rise), after which the value
is relatively constant. We think that the first rise in heterogeneity reflects
differences in experimental design (for instance, using different drug doses to
characterise dose-response relationships) and heterogeneity as different
research teams seek to replicate the originator finding. The fall occurs, we
propose, as the community unites or coalesces around designs where efficacy
is reliably observed. The second rise, we propose, occurs as investigators
seek to extend the range of circumstances under which efficacy is seen, to
identify the limits to efficacy. Finally, the plateau occurs when investigators
have tested all relevant circumstances and represents the maturation of the
evidence. Under this schema, evidence for efficacy cannot be considered
mature until τ2 has plateaued.

(g) Using datasets from systematic reviews of NXY059 (Macleod et al. 2008),
FK506 (Macleod et al. 2005), nicotinamide (Macleod et al. 2004), tirilazad
(Sena et al. 2007), IL1RA (McCann et al. 2016), hypothermia (van der Worp
et al. 2007) and tPA (Sena et al. 2010), which include varying numbers of
experiments, we have performed cumulative random effects meta-analysis
and investigated the changes in the heterogeneity as more studies are added.
As the number of included studies increases, all the datasets show the
expected increase in Cochrane’s Q. However, for both I2 (the percentage of
the variability in effect sizes that is due to variability between studies rather
than just random sampling error) and when Q is adjusted for the number of
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included studies, there is first an increase with small number of studies,
followed by a slow decline and stabilisation as more studies are included.
Using cumulative meta-regression with inclusion of explanatory variables in
the analysis shows an increasing precision in the estimates of beta
coefficients with inclusion of more studies. Similarly, the cumulative
between-study variability (measured using the REML estimate of
τ2 explained by an explanatory variable shows an initial peak with a later
decreasing trend, where it gradually stabilises, suggesting that saturation of
evidence has been reached. These preliminary findings using seven preclini-
cal datasets suggest that the systematic characterisation of heterogeneity
within stroke datasets relating to important community-identified
requirements for the circumstances in which efficacy is observed, when
considered alongside the size of effects observed, might form the basis of a
useful guide to inform decisions to proceed with further clinical testing.

(h) It is inconceivable that a drug will show efficacy under all conceivable
circumstances of testing; and (for decisions to embark on human clinical
trials at least) it is important that the limits to efficacy are established.
Therefore, where a cohort of animal studies shows evidence for efficacy
but little or no heterogeneity, this should raise concern – it is scarcely credible
that a drug always works and much more likely that the range of
circumstances under which efficacy has been tested has been too narrow
reliably to define the characteristics of drug response.

(i) This is important; the GRADE approach to evidence synthesis considers that
heterogeneity in a body of evidence is a bad thing and that the strength of
evidence-based recommendations should be downgraded in the presence of
heterogeneity. While this may be true for very tightly defined clinical
questions, it is in our view certainly not the case when summarising a
group of animal studies.

6. Examples
(a) Disease models: Systematic review and meta-analysis can be used to sum-

marise published work using a particular disease model. For instance, Currie
and colleagues examined the literature on bone cancer-induced pain (Currie
et al. 2013). Across 112 studies they found substantial increases in pain-
related behaviours, most commonly measured using mechanical allodynia,
along with reduced body weight and reduced locomotion, but no change in
reported food intake. There was also evidence of changes in the spinal cord,
each reported by more than five publications, of astrocytosis, and increased
c-Fos, substance P (NK1) receptor internalisation, dynorphin, IL-1b and
TNF-a.

(b) Drugs: Rooke et al. reported (Rooke et al. 2011) the effect of dopamine
agonists in animal models of Parkinson’s disease. For drugs tested in more
than one publication, all drugs in common clinical use showed evidence of
substantial efficacy, with ropinirole, rotigotine, apomorphine, lisuride and
pramipexole having more efficacy (in the point estimate) than the 95%
confidence limits of the overall estimate for all drugs combined. However,
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as discussed above these estimates have limited value, and random allocation
to group was reported by 16% of publications (16%), blinded assessment of
outcome by 15% and a sample size calculation by <1%. Across all
neurobehavioural outcomes, there was an inverse relationship between
study quality and effect size, and reporting of blinded assessment of outcome
was associated with significantly smaller effect sizes.

(c) Outcome measures: Egan et al. conducted a systematic review of
publications reporting the efficacy of drugs tested in animal models of
Alzheimer’s disease (Egan et al. 2016). As well as describing the variety of
neurobehavioural and histological outcomes which had been reported, they
gave particular focus to the use of the Morris water maze. Reporting of
experimental details was generally incomplete; 16% of studies did not report
the size of the water maze used, and in those that did, this ranged from 85 cm
to 200 cm. 35% of studies did not report water temperature, and in those that
did, this ranged from 16�C to 28�C. The number of acquisition trials per day
ranged from 2 to 12 and was unreported in 23%, and the number of days
training ranged from 1 to 15 and was unreported in 13. Remarkably, in
57 publications describing the probe phase, there were 59 different
approaches used to demonstrate efficacy, suggesting a degree of flexibility
in analysis and reporting. Only 36% of experiments reported randomisation
to intervention or control, and only 24% of experiments reported the blinded
assessment of outcome. Overall, reported efficacy was significantly higher in
non-randomised and in non-blinded studies.

(d) Risks of bias: Following the publication of the neutral SAINT II trial (Shuaib
et al. 2007), we conducted a systematic review of published in vivo data on
the efficacy of NYY-059 (Macleod et al. 2008). Reporting of measures to
reduce the risk of bias was again low, with lower estimates of improvement
in infarct volume in those studies which reported randomisation, in those
which reported the blinded conduct of the experiment and in those which
reported the blinded assessment of outcome. These findings were supported
by a later individual animal meta-analysis which also had access to unpub-
lished industry data (Bath et al. 2009).

In later work we examined reporting of risks of bias in work published in
leading journals and, separately, in work from leading UK institutions
(Macleod et al. 2015). We found journal impact factor to be no guarantee
of study quality, and in fact randomisation was less frequently reported in
high-impact journals. At an institutional level, only 1 of 1,173 publications
from leading UK institutions reported 4 aspects of study design
(randomisation, blinding, reporting of inclusions and exclusions and sample
size calculations) identified by Landis et al. as being critical to allowing
readers to judge the provenance of the findings presented, and 68% of
publications reported not one of these.

(e) Power calculations: Appropriate design of animal experiments includes
consideration of how many subjects should be included. Formal power
calculations require assertion of the minimum effect size of interest which
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the investigator would like to be able to detect, their tolerance of the risk of
missing a true result and the variability of the outcome measure used. As well
as giving some indication of the possible statistical variance which might be
observed when a lab uses a model or outcome measure for the first time,
knowledge of the performance of different outcome measures testing broadly
similar behavioural substrates can inform refinement of experimental designs
to reduce animal pain and suffering. For instance, as part of a systematic
review of animal studies modelling chemotherapy-induced peripheral neu-
ropathy, Currie et al. compared the statistical performance of different
approaches to measuring mechanical allodynia, showing superiority of elec-
tronic over mechanical von Frey testing (Currie et al. 2019).

(f) Curated current contents: Borrowing from the concept of “Living” system-
atic reviews (Elliott et al. 2017), real-time information in a given field can be
summarised on an online platform which presents the up-to-date results
visually. Ideally, such a platform should be interactive, allowing any research
user (a biomedical researcher, a funder, an institution) not only to gain a
quick overview of the field but also to filter the results in a way which is most
relevant to them, e.g. by specific models or treatments of interest, by
reporting quality or by year of publication. Two recent examples are our
RShiny applications which summarise the literature on animal models of
depression (https://abannachbrown.shinyapps.io/preclinical-models-of-
depression/) and animal models of chemotherapy-induced peripheral neurop-
athy (https://khair.shinyapps.io/CIPN/).

3 Summary

The amount of relevant in vivo data is substantial, and nonsystematic attempts to
summarise what is already known may draw misleading conclusions. Because the
selection of included information is an objective process, it is not possible critically
to appraise the conclusions drawn, other than by reference to the reputation of the
authors (as indeed is the case with the current work). Systematic review offers a
transparent approach to identifying relevant information such that it would be
possible for others to replicate the approach. Such reviews also allow ascertainment
of the features of a body of work, which might lead to suggestions for how a field
might seek improvement. Meta-analysis allows a quantitative summary of overall
effects, any association between various study design factors and observed outcome,
an assessment of the likelihood of publication bias and recommendations for sample
size calculations for future experiments.

While the process is burdensome, the value of the information obtained is
substantial, and emerging automation tools are likely substantially to reduce the
costs, and the time taken, for systematic review and meta-analysis.
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