5,086 research outputs found

    Take-off mechanics in hummingbirds (Trochilidae)

    Get PDF
    Initiating flight is challenging, and considerable effort has focused on understanding the energetics and aerodynamics of take-off for both machines and animals. For animal flight, the available evidence suggests that birds maximize their initial flight velocity using leg thrust rather than wing flapping. The smallest birds, hummingbirds (Order Apodiformes), are unique in their ability to perform sustained hovering but have proportionally small hindlimbs that could hinder generation of high leg thrust. Understanding the take-off flight of hummingbirds can provide novel insight into the take-off mechanics that will be required for micro-air vehicles. During take-off by hummingbirds, we measured hindlimb forces on a perch mounted with strain gauges and filmed wingbeat kinematics with high-speed video. Whereas other birds obtain 80–90% of their initial flight velocity using leg thrust, the leg contribution in hummingbirds was 59% during autonomous take-off. Unlike other species, hummingbirds beat their wings several times as they thrust using their hindlimbs. In a phylogenetic context, our results show that reduced body and hindlimb size in hummingbirds limits their peak acceleration during leg thrust and, ultimately, their take-off velocity. Previously, the influence of motivational state on take-off flight performance has not been investigated for any one organism. We studied the full range of motivational states by testing performance as the birds took off: (1) to initiate flight autonomously, (2) to escape a startling stimulus or (3) to aggressively chase a conspecific away from a feeder. Motivation affected performance. Escape and aggressive take-off featured decreased hindlimb contribution (46% and 47%, respectively) and increased flight velocity. When escaping, hummingbirds foreshortened their body movement prior to onset of leg thrust and began beating their wings earlier and at higher frequency. Thus, hummingbirds are capable of modulating their leg and wingbeat kinetics to increase take-off velocity

    Studies of sulfur in relation to the soil solution,

    Get PDF
    P5(4

    Corporate and Individual Influences on Managers\u27 Social Orientation

    Get PDF
    This paper reports research on the influence of corporate and individual characteristics on managers\u27 social orientation in Germany. The results indicate that mid-level managers expressed a significantly lower social orientation than low-level managers, and that job activity did not impact social orientation. Female respondents expressed a higher social orientation than male respondents. No impact of the political system origin (former East Germany versus former West Germany) on social orientation was shown. Overall, corporate position had a significantly higher impact on social orientation than did the characteristics of the individuals surveyed

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. I. Flight Kinematics

    Get PDF
    Hummingbirds are nature’s masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the ‘helicopter model’ that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species

    Content Area Reading: A Modular Approach

    Get PDF
    The project is unique in two major respects. First, it greatly simplifies the participation of individual teachers by making available instructional modules prepared in advance for each textbook unit. Second, it coordinates the use of these modules with a diagnostic/prescriptive management system operated in the language arts program

    An Evaluation of Audio-Visual and Self-Learning Programs for Agricultural Economic Students

    Get PDF
    Exact date of working paper unknown

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. II. Aerodynamic Force Production, Flight Control and Performance Limitations

    Get PDF
    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres

    Statistics and Quantum Chaos

    Full text link
    We use multi-time correlation functions of quantum systems to construct random variables with statistical properties that reflect the degree of complexity of the underlying quantum dynamics.Comment: 12 pages, LateX, no figures, restructured versio

    Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series

    Full text link
    A nonlinear dynamics approach can be used in order to quantify complexity in written texts. As a first step, a one-dimensional system is examined : two written texts by one author (Lewis Carroll) are considered, together with one translation, into an artificial language, i.e. Esperanto are mapped into time series. Their corresponding shuffled versions are used for obtaining a "base line". Two different one-dimensional time series are used here: (i) one based on word lengths (LTS), (ii) the other on word frequencies (FTS). It is shown that the generalized Hurst exponent h(q)h(q) and the derived f(α)f(\alpha) curves of the original and translated texts show marked differences. The original "texts" are far from giving a parabolic f(α)f(\alpha) function, - in contrast to the shuffled texts. Moreover, the Esperanto text has more extreme values. This suggests cascade model-like, with multiscale time asymmetric features as finally written texts. A discussion of the difference and complementarity of mapping into a LTS or FTS is presented. The FTS f(α)f(\alpha) curves are more opened than the LTS onesComment: preprint for PRE; 2 columns; 10 pages; 6 (multifigures); 3 Tables; 70 reference
    corecore