17,956 research outputs found

    A New Model of Trend Inflation

    Get PDF
    This paper introduces a new model of trend (or underlying) inflation. In contrast to many earlier approaches, which allow for trend inflation to evolve according to a random walk, ours is a bounded model which ensures that trend inflation is constrained to lie in an interval. The bounds of this interval can either be fixed or estimated from the data. Our model also allows for a time-varying degree of persistence in the transitory component of inflation. The bounds placed on trend inflation mean that standard econometric methods for estimating linear Gaussian state space models cannot be used and we develop a posterior simulation algorithm for estimating the bounded trend inflation model. In an empirical exercise with CPI inflation we find the model to work well, yielding more sensible measures of trend inflation and forecasting better than popular alternatives such as the unobserved components stochastic volatility model.

    A two-dimensional mixing length theory of convective transport

    Full text link
    The helioseismic observations of the internal rotation profile of the Sun raise questions about the two-dimensional (2D) nature of the transport of angular momentum in stars. Here we derive a convective prescription for axisymmetric (2D) stellar evolution models. We describe the small scale motions by a spectrum of unstable linear modes in a Boussinesq fluid. Our saturation prescription makes use of the angular dependence of the linear dispersion relation to estimate the anisotropy of convective velocities. We are then able to provide closed form expressions for the thermal and angular momentum fluxes with only one free parameter, the mixing length. We illustrate our prescription for slow rotation, to first order in the rotation rate. In this limit, the thermodynamical variables are spherically symetric, while the angular momentum depends both on radius and latitude. We obtain a closed set of equations for stellar evolution, with a self-consistent description for the transport of angular momentum in convective regions. We derive the linear coefficients which link the angular momentum flux to the rotation rate (Λ\Lambda- effect) and its gradient (α\alpha-effect). We compare our results to former relevant numerical work.Comment: MNRAS accepted, 10 pages, 1 figure, version prior to language editio

    Testing Theoretical Evolutionary Models with AB Dor C and the Initial Mass Function

    Full text link
    We assess the constraints on the evolutionary models of young low-mass objects that are provided by the measurements of the companion AB Dor C by Close and coworkers and by a new comparison of model-derived IMFs of star-forming regions to the well-calibrated IMF of the solar neighborhood. After performing an independent analysis of Close's imaging and spectroscopic data for AB Dor C, we find that AB Dor C is not detected at a significant level (SN 1.2) in the SDI images when one narrow-band image is subtracted from another, but that it does appear in the individual SDI frames as well as the images at JHK. Using the age of 75-150 Myr for AB Dor from Luhman, Stauffer, & Mamajek, the luminosity predicted by the models of Chabrier & Baraffe is consistent with the value that we estimate. We measure a spectral type of M6+/-1 from the K-band spectrum of AB Dor C, which is earlier than the value of M8+/-1 from Close and is consistent with the model predictions when a dwarf temperature scale is adopted. In a test of these models at much younger ages, we show that the low-mass IMFs that they produce for star-forming regions are similar to the IMF of the solar neighborhood. If the masses of the low-mass stars and brown dwarfs in these IMFs of star-forming regions were underestimated by a factor of two as suggested by Close, then the IMF characterizing the current generation of Galactic star formation would have to be radically different from the IMF of the solar neighborhood.Comment: 15 pages, accepted to the Astrophysical Journa

    Higgs boson hadronic branching ratios at the ILC

    Full text link
    We present a study of the Higgs boson decay branching ratios to bbˉb\bar{b}, ccˉc\bar{c} and gluons, one of the cornerstones of the physics program at the International Linear Collider (ILC). A standard model Higgs boson of 120\,GeV mass, produced in the Higgs-strahlung process at s=250\sqrt{s} = 250\,GeV was investigated using the full detector simulation and reconstruction procedures. The analysis was performed in the framework of the Silicon Detector (SiD) concept with full account of inclusive standard model backgrounds. The selected decay modes contained two heavy flavour jets in the final state and required excellent flavour tagging through precise reconstruction of interaction and decay vertices in the detector. A new signal discrimination technique using correlations of neural network outputs was used to determine the branching ratios and estimate their uncertainties, 4.8\%, 8.4\% and 12.2\% for bbˉb\bar{b}, ccˉc\bar{c} and gluons respectively.Comment: 9 Pages, 5 figures and 5 table

    A study of weather-dependent data links for deep space applications

    Get PDF
    Weather-dependent data links for deep space applications, and five potential system

    Degree of Change: The MA in English Studies

    Get PDF
    From the publisher: As the needs of those seeking an MA in English studies have evolved, so too have the degree’s mission and identity. Margaret M. Strain and Rebecca C. Potter, editors of Degree of Change: The MA in English Studies, argue that the MA is positioned in a dynamic contact zone—“a place where disciplinary knowledge, student need, and local exigencies interact and where disciplinary identity is constantly negotiated.”Looking primarily at stand-alone master’s programs, this volume examines the design, delivery, and value of a master’s degree in English in the twenty-first century and challenges the characterization that MA programs in English serve primarily as stepping-stones to the PhD. Rather, contributors reveal how central the MA is to shaping the purpose and identity of contemporary English studies, through descriptions of a variety of specific MA programs. Gathering perspectives from faculty, program directors, and students from across the country, Strain and Potter showcase not only the diversity of such programs, but also the ways in which program identity and mission are richly interwoven with concerns about local needs, graduate student career trajectories, and the effects of a market-driven educational climate. This collection provides a substantive discussion that goes beyond questioning the state of English studies—it points to curricular, programmatic, and professional innovations that are transforming the field, calling for new dialogue in higher education about the pivotal role of the MA in English

    1999 Quadrantids and the lunar Na atmosphere

    Get PDF
    Enhancements of the Na emission and temperature from the lunar atmosphere were reported during the Leonids meteor showers of 1995, 1997 and 1998. Here we report a search for similar enhancement during the 1999 Quadrantids, which have the highest mass flux of any of the major streams. No enhancements were detected. We suggest that different chemical-physical properties of the Leonid and Quadrantid streams may be responsible for the difference.Comment: 5 pages, 1 figure, accepted for publication in MNRA
    • …
    corecore