23,556 research outputs found

    Modelling blazar flaring using a time-dependent fluid jet emission model - an explanation for orphan flares and radio lags

    Full text link
    Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ~ months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay timescale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ\gamma-ray flares. These are caused by flares which are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and lightcurves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.Comment: 16 pages, 9 figures, accepted for publication in MNRA

    In a democracy, are some citizens more important than others?

    Get PDF

    Aerodynamics of 3-dimensional bodies in transitional flow

    Get PDF
    Based on considerations of fluid dynamic simulation appropriate to hypersonic, viscous flow over blunt-nosed lifting bodies, a method was presented earlier for estimating drag coefficients in the transitional-flow regime. The extension of the same method to prediction of lift coefficients is presented. Correlation of available experimental data by a simulation parameter appropriate for this purpose is the basis for the procedure described. The ease of application of the method makes it useful for preliminary studies which involve a wide variety of three-dimensional vehicle configurations or a range of angles of attack of a given vehicle

    Commentary on the 1985 NASA/Vanderbilt Symposium on Future Hypervelocity Flight Requirements

    Get PDF
    The discussion, started in Semiannual Status Report Number 1, on aerothermal problems of hypervelocity flight and experiments that may lead to significant improvements in analytical/computational predictive methods, continues. The commentary is based on presentations made by speakers at a symposium on this subject held in December 1985. Symposium participants focused on the serious deficiencies that exist in knowledge of real-gas, nonequilibrium thermochemical-kinetic processes, catalytic processes, surface and shock slip, gas/surface interaction, boundary layer transition, and vortical leeside flows under hypervelocity conditions. Programs of laboratory research and computations leading toward in-flight experiments were recommended. Feasibility of appropriate measurement techniques for the flight environment was assessed and problems for study in that area identified. A synopsis of the oral presentations is given

    Uncovering the physics behind the blazar sequence using a realistic model for jet emission

    Full text link
    Blazar spectra are one of the most important windows into the physical processes occurring along jets. The spectrum, composed from the different emitting regions along the jet, allows us to constrain the physical conditions in the jet. I present my work modelling blazar spectra using an extended inhomogeneous jet model with an accelerating, magnetically dominated, parabolic base transitioning to a slowly decelerating, conical section motivated by observations, simulations and theory. We set the inner geometry of our multi-zone model using observations of the jet in M87 which transitions from parabolic to conical at 10^5 Schwarzschild radii. This model is able to reproduce quiescent blazar spectra very well across all wavelengths (including radio observations) for a sample of 42 BL Lacs and FSRQs. Using this inhomogeneous model we are able to constrain the location at which the synchrotron emission is brightest in these jets by fitting to the optically thick to thin synchrotron break. We find that the radius of the jet at which the synchrotron emission is brightest (where the jet first approaches equipartition) scales approximately linearly with the jet power. We also find a correlation between the length of the accelerating, parabolic section of the jet and the maximum bulk Lorentz factor. In agreement with previous work we find that BL Lacs are low power blazars whereas FSRQs are high power blazars. Together with our simple jet power-radius relation this leads us to a deeper understanding of the physics underlying the blazar sequence.Comment: 5 pages, 5 figures, to appear in "The Innermost Regions of Relativistic Jets and Their Magnetic Fields" conference proceedings; includes minor change

    A simulation study of Large Area Crop Inventory Experiment (LACIE) technology

    Get PDF
    The author has identified the following significant results. The LACIE performance predictor (LPP) was used to replicate LACIE phase 2 for a 15 year period, using accuracy assessment results for phase 2 error components. Results indicated that the (LPP) simulated the LACIE phase 2 procedures reasonably well. For the 15 year simulation, only 7 of the 15 production estimates were within 10 percent of the true production. The simulations indicated that the acreage estimator, based on CAMS phase 2 procedures, has a negative bias. This bias was too large to support the 90/90 criterion with the CV observed and simulated for the phase 2 production estimator. Results of this simulation study validate the theory that the acreage variance estimator in LACIE was conservative
    corecore