22 research outputs found

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Combining fourier transform-ion cyclotron resonance/mass spectrometry analysis and kendrick plots for silicon speciation and molecular characterization in petroleum products at trace levels

    No full text
    cited By 13International audienceA new method combining FT-ICR/MS analysis and Kendrick plots for the characterization of silicon species at trace levels in light petroleum products is presented. The method provides efficient instrumental detection limits ranging from 80 ng/kg to 5 μg/kg and reliable mass accuracy lower than 0.50 ppm for model silicon molecules in spiked gasoline. More than 3000 peaks could be detected in the m/z 50-500 range depending on the nature of the gasoline sample analyzed. An in-house software program was used to calculate Kendrick plots. Then, an algorithm searched, selected, and represented silicon species classes (O 2Si, O 3Si, and O 4Si classes) in Kendrick plots by incorporating model molecules' information (i.e., exact mass and intensity). This procedure allowed the complete characterization of more than 50 new silicon species with different degrees of unsaturation in petroleum products. © 2012 American Chemical Society

    Development of heart-cutting multidimensional gas chromatography coupled to time of flight mass spectrometry for silicon speciation at trace levels in gasoline samples

    No full text
    cited By 8International audienceTo improve the understanding of hydrotreatment (HDT) catalyst poisoning by silicon species, these molecules must be characterized in petroleum products using powerful analytical systems. Heart-cutting gas chromatography coupled to time of flight mass spectrometry (GC-GC/TOFMS) method equipped with a Deans switch (DS) system was developed for the direct characterization of target silicon compounds at trace level (μgkg-1) in gasoline samples. This method was performed to identify silicon compounds never characterized before. After the selection of the second dimension column using GC-GC-FID, GC-GC/TOFMS was performed. The calibration curves obtained by the GC-GC/TOFMS method were linear up to 1000μgkg-1. Limits of detection (LOD) were ranging from 5 to 33μgkg-1 in spiked gasoline. The method provided sufficient selectivity and sensitivity to characterize known silicon compounds thanks to their specific ions and their retention times. The analysis of a naphtha sample by GC-GC/TOFMS has shown the presence of cyclic siloxanes (Dn) as major compounds of PDMS thermal degradation with the occurrence of linear siloxanes, especially hexamethyldisiloxane (L2), which was never characterized in petroleum products but already known as severe poison for catalyst. © 2012 Elsevier B.V

    Characterization of silicon species issued from PDMS degradation under thermal cracking of hydrocarbons: Part 1 - Gas samples analysis by gas chromatography-time of flight mass spectrometry

    No full text
    cited By 3International audienceSilicon species are becoming emergent contaminants in the oil and gas industry due to their severe poisoning effect on the hydrotreatment (HDT) catalysts. Using an experimental pilot plant, fresh and representative samples of PDMS degradation under thermal cracking of hydrocarbons were produced. To follow the evolution of silicon species, the gas fraction was immediately analyzed by GC/TOFMS after the production and also after 4 months of storage at 4 C. Cyclic siloxanes (Dn) as the major products of PDMS thermal degradation were characterized in the gas phase but these compounds are mainly present in the liquid fraction. Five volatile silicon compounds belonging to the families of silanes, siloxanes and silanols were characterized and quantified in the thermal cracking samples depending on the operating conditions applied in degradation tests. Under coking or visbreaking conditions (long residence time, absence of steam), silanes and siloxanes were preferentially formed. Under evaluated steam cracking conditions (short residence time and presence of steam), trimethylsilanol (TMSOH) was mainly produced by the hydrolysis of PDMS. The formation of the linear siloxane (L2) after several month of storage at 4 C by the self-condensation of TMSOH was also observed. The suspected poisoning effects of these molecules were discussed and could explain the deactivation of catalysts taking place in the refining of the light petroleum cuts. The new identified volatile silicon compounds could affect the performance of the catalyst by the reaction of hydroxyl groups potentially present at the surface of the support with reactive silicon molecules, more specifically silanols. © 2013 Elsevier Ltd. All rights reserved

    Shear-Induced Anisotropy in Rough Elastomer Contact

    No full text
    International audienceTrue contact between randomly rough solids consists of myriad individual micro-junctions. While their total area controls the adhesive friction force of the interface, other macroscopic features, including viscoelastic friction, wear, stiffness and electric resistance, also strongly depend on the size and shape of individual micro-junctions. Here we show that, in rough elastomer contacts, the shape of micro-junctions significantly varies as a function of the shear force applied to the interface. This process leads to a growth of anisotropy of the overall contact interface, which saturates in macroscopic sliding regime. We show that smooth sphere/plane contacts have the same shear-induced anisotropic behaviour as individual micro-junctions, with a common scaling law over four orders of magnitude in initial area. We discuss the physical origin of the observations in the light of a fracture-based adhesive contact mechanics model, described in the companion article, which captures the smooth sphere/plane measurements. Our results shed light on a generic, overlooked source of anisotropy in rough elastic contacts, not taken into account in current rough contact mechanics models
    corecore