84 research outputs found

    COMPLETED LBP BASED TEXTURE ANALYSIS IN MAMMOGRAM

    Get PDF
    Breast cancer is a frequent cancer diseases and it is the leading cause of cancer death among women in most of the occidental countries. Mammography is one among the key tool to identify the location and size of tumor in the breast. Texture analysis plays an important role in detecting the disease patterns in mammogram and to identify the masses as normal or abnormal. The local binary pattern descriptor provides an illumination invariant and rotation invariant approach for the texture analysis. However the LBP consider only the sign parameters. So it may lose some textural information. This can be overcome by considering the sign, magnitude and centre gray level values. Here a new approach for the Texture analysis in mammogram using completed LBP is presented. Although different methods have been proposed most of them suffer from large number of false positives. In contrast this method uses textural properties to reduce the number of false positives

    Studies on Longshore Sediment Transport Along Coast of Nagapattinam, India

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Model Study of River Cooum in Chennai, India

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Efficacy of electronic apex locators in comparison with intraoral radiographs in working length determination- a systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Successful endodontic treatment needs accurate determination of working length (WL). Electronic apex locators (EALs) were presented as an alternative to radiographic methods; and since then, they have evolved and gained popularity in the determination of WL. However, there is insufficient evidence on the post-operative pain, adequacy, and accuracy of EALs in determining WL. OBJECTIVE: The systematic review and meta-analysis aims to gather evidence regarding the effectiveness of EALs for WL determination when compared to different imaging techniques along with postoperative pain associated with WL determination, the number of radiographs taken during the procedure, the time taken, and the adverse effects. METHODS: For the review, clinical studies with cross-over and parallel-arm randomized controlled trials (RCTs) were searched in seven electronic databases, followed by cross-referencing of the selected studies and related research synthesis. Risk of bias (RoB) assessment was carried out with Cochrane's RoB tool and a random-effects model was used. The meta-analysis was performed with the RevMan software 5.4.1. RESULTS: Eleven eligible RCTs were incorporated into the review and eight RCTs into the meta-analysis, of which five had high RoB and the remaining six had unclear RoB. Following meta-analysis, no significant difference in postoperative pain was found among the EAL and radiograph groups (SMD 0.00, CI .29 to .28, 354 participants; P value = 0.98). Radiograph group showed better WL accuracy (SMD 0.55, CI .11 to .99, 254 participants; P value = 0.02), while the EAL group had 10% better WL adequacy (RR 1.10, CI 1.03-1.18, 573 participants; P value = 0.006). CONCLUSION: We found very low-certainty evidence to support the efficacy of different types of EAL compared to radiography for the outcomes tested. We were unable to reach any conclusions about the superiority of any type of EAL. Well-planned RCTs need to be conducted by standardizing the outcomes and outcome measurement methods

    A review on microalgae as potential lipid container with wastewater treating functions

    Get PDF
    Abstract Microalgae are reported as potential source to produce lipids from their biomass cells. Lipid as a group of organic compound is a primary raw material used in biofuel production as well as component for foods, cosmetic products, fertilizers and animal feed. As the resources of manufacturing lipid from synthetic media are costly, the derivation of inexpensive carbon and nutritional sources from wastewater such as palm oil mill effluent (POME) is useful in massive scale. Furthermore, unique characteristic of microalgae as alternative agents to treat POME wastewater is another encouraging aspect of its application. In addition, biodiesel production from algae can produce 5,000 -15,000 gallons of biodiesel per acre/year. However, high yield production of high-lipid-content-algae biomass, determination of effective techniques in order to harvest grown algae, algal oil extraction and trans-esterification of extracted oil for converting into biodiesel are challenging issues need deep investigation. This review is focused on previous studies on POME as possible carbon and nutritional source used to treat environmental pollution caused by POME discharges and to increase the growth rate of microalgae in order to high-lipid content production

    Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes

    Get PDF
    Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.Biotechnology and Biological Sciences Research Council (Great Britain) (Grants BB/L011484/1 and BB/L011476/1)National Science Foundation (U.S.) (Grant 1331098

    Dual phase role of composite adsorbents made from cockleshell and natural zeolite in treating river water

    Get PDF
    In this study, the potential of dual-phase composite adsorbent to determine the removal efficiency of organic compounds such as COD, BOD, TP, and TN was investigated. The combination ratio of cockleshell and natural zeolite was optimized using D-optimal mixture design (DMD). The generated ratio was tested using run test in Easy Care PipeSystem (ECPS). Breakthrough curve was plotted to determine the total removal by composite adsorbent. In addition, linearization of the breakthrough curve by dynamic models was implemented to characterize the adsorption process by the composite adsorbent in ECPS column model. The linearization of breakthrough curve was done using mathematical models, Adam-Bohart, Yoon-Nelson and Thomas model. It was found that the optimal mixture ratio was at 75% cockleshells and 25% natural zeolite. Based on the experiments, the composite adsorbent showed high tendency to higher removal by 90% of targeted value. Based on the results, the composite adsorbent was fitted better with Yoon-Nelson and Thomas model rather than Adam-Bohart model. The generated models were able to characterize the adsorption process using composite adsorbent in the ECPS column system

    Atomic Layer Deposition (ALD) to Mitigate Tin Whisker Growth and Corrosion Issues on Printed Circuit Board Assemblies

    Get PDF
    This paper presents the results of a research program set up to evaluate atomic layer deposition (ALD) conformal coatings as a method of mitigating the growth of tin whiskers from printed circuit board assemblies. The effect of ALD coating process variables on the ability of the coating to mitigate whisker growth were evaluated. Scanning electron microscopy and optical microscopy were used to evaluate both the size and distribution of tin whiskers and the coating/whisker interactions. Results show that the ALD process can achieve significant reductions in whisker growth and thus offers considerable potential as a reworkable whisker mitigation strategy. The effect of ALD layer thickness on whisker formation was also investigated. Studies indicate that thermal exposure during ALD processing may contribute significantly to the observed whisker mitigation

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore