176 research outputs found

    Was it a fatal whiplash injury or not? Clinical forensic anatomy: a key to shed light on a case

    Get PDF
    Autopsy is the oldest method of medical investigation. Many studies underscore the need for autopsies also in the era of technical progress emphasizing the continuing discrepancies between ante-mortem and post-mortem diagnoses. The forensic pathologist (and anatomist, too) has to know in depth the anatomy and how to study it using the dissection techniques with the help of new pre and post autoptical technologies.  Forensic radiology must integrate the expertise of forensic pathologist, the challenge is to unite all disciplines by direct and intense communication. Furthermore, histology plays a fundamental role in the final diagnosis and the collection of the samples requires the correct visualization and isolation of all the supposed organ lesions.  We present a case report with a multidisciplinary method to the cadaver, about a presumed “road murder”, in which the forensic clinical anatomical approach was directed to the cause and means of death. A case of a 79 years old man victim of a frontal crash is presented. At the scene, the driver was found comatose (GCS 3) and carried to the Emergency Department. At the ED, the patient was subjected to CT scan of brain and angio CT scan, directed, in particular, to epiaortic vessels. CT scan showed a widespread ischemia of cortical and subcortical areas of pariar, occipital and cerebellar lobes; angio CT scan revealed the complete occlusion of the lumen of both vertebral arteries, at the level of the third cervical vertebra. The man died about 4 days after his admittance to the hospital. Was it a death after a whiplash injury or not? Before performing autopsy, a head and neck CT scan was carried out. Autopsy was performed 6 days later, and was carried according to a protocol for the examination of the V3 – V4 segments of the vertebral artery. Imaging first, and then autopsy, revealed completely different findings from those shown in ante mortem CT scan, that revealed the true cause of death.

    Radiological evidence of a modern 'martyr's crown': suicide by multiple self-inflicted nail gun shots.

    Get PDF
    A man attempted suicide by shooting seven nails into his head with a nail gun; five in the right temporal region and two in the left. He subsequently presented at the emergency department with complaints of headache. He was found to be oriented in space and time, with no focal neurological deficits. The patient handed the nail gun to the doctors and informed them that he had earlier attempted suicide. Radiological studies showed the presence of nails arranged like a ‘martyr’s crown’. The man died six days after the surgical removal of the nails. Autopsy was refused by Italian authorities. We conclude that imaging techniques are an adjuvant to forensic medical diagnosis and forensic autopsies

    Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB

    Get PDF
    The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-ÎșB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-ÎșB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-ÎșB. It has been argued that one of the pathways leading to the activation of NF-ÎșB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-ÎșB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-ÎșB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-ÎșB, and that this negative regulation of ROS is the means through which NF-ÎșB counters programmed cells

    Early loss of blood-brain barrier integrity precedes NOX2 elevation in the prefrontal cortex of an animal model of psychosis

    Get PDF
    The social isolation rearing of young adult rats is a model of psychosocial stress and provides a nonpharmacological tool to study alterations reminiscent of symptoms seen in psychosis. We have previously demonstrated that social isolation in rats leads to increased oxidative stress and to cerebral NOX2 elevations. Here, we investigated early alterations in mRNA expression leading to increased NOX2 in the brain. Rats were exposed to a short period of social isolation (1 week) and real-time polymerase chain reaction (PCR) for mRNA expression of genes involved in blood-brain barrier (BBB) formation and integrity (ORLs, Vof 21 and Vof 16, Leng8, Vnr1, and Trank 1 genes) was performed. Real-time PCR experiments, immunohistochemistry, and Western blotting analysis showed an increased expression of these genes and related proteins in isolated rats with respect to control animals. The expression of specific markers of BBB integrity, such as matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), occludin 1, and plasmalemmal vesicle associated protein-1 (PV-1), was also significantly altered after 1 week of social isolation. BBB permeability, evaluated by quantification of Evans blue dye extravasation, as well as interstitial fluid, was significantly increased in rats isolated for 1 week with respect to controls. Isolation-induced BBB disruption was also accompanied by a significant increase of Interleukin 6 (IL-6) expression. Conversely, no differences in NOX2 levels were detected at this time point. Our study demonstrates that BBB disruption precedes NOX2 elevations in the brain. These results provide new insights in the interplay of mechanisms linking psychosocial stress to early oxidative stress in the brain, disruption of the BBB, and the development of mental disorders

    Prevalence of anti-nuclear autoantibodies in subjects exposed to natural asbestiform fibers: a cross-sectional study.

    Get PDF
    Fluoro-edenite (FE) is an asbestiform mineral fiber spotted in the lava rocks excavated from a stone quarry in Biancavilla (Italy). The derived material had been employed locally for building purposes. Previous studies found evidence that exposure to asbestos may induce autoimmunity, with frequency of anti-nuclear autoantibodies (ANA). The aim of this study was to explore the relationship between FE exposure and autoimmune responses in an exposed population. For the study, 60 subjects living in the area of Biancavilla and 60 subjects as control group were randomly invited to participate. A free medical check, including spirometry and a high-resolution computer tomography chest scan, was given to all participants. ANA were determined by indirect immunofluorescence. On medical check, no subject showed any sign and/or symptoms of illness. Prevalence for samples positive to ANA were 70% (n = 42) and 25% (n = 15), respectively, for exposed and non-exposed subjects (p < 0.05). The presence of pleural plaques (PP) was found in 21 (30%) of the exposed subjects and in 2 (3%) of the non-exposed participants. PP subjects were always ANAs positive. In conclusion, as already it was observed with exposure to asbestos fibers, levels of ANA seemed to significantly increase in subjects who had been exposed to FE. Furthermore, all subjects showing PP were also ANA-positive. This first finding in subjects exposed to FE should encourage researchers to further investigate associations between autoimmune unbalance and environmental exposure to asbestiform fibers

    Clinical-Forensic Autopsy Findings to Defeat COVID-19 Disease: A Literature Review

    Get PDF
    The severe acute respiratory syndrome (SARS)-CoV-2 was identified for the first time in China, in December 2019. Confirmed cases of COVID-19 have been reported around the world; indeed, this infection has been declared a pandemic. Consequently, the scientific community is working hard to gain useful information about the history of this virus, its transmission, diagnosis, clinical features, radiological findings, research and development of candidate therapeutics as well as vaccines. This review aims to analyze the diagnostic techniques used to ascertain the COVID-19 infection, critically reviewing positive points and criticism for forensic implications, obviously including autopsy. Finally, this review proposes a practical workflow to be applied in the management of corpses during this outbreak of the COVID-19 infection, which could be useful in cases of future infectious disease emergencies. Analyzing the diagnostic methods, to date, virus nucleic acid RT-PCR represents the standard method used to ascertain the COVID-19 infection in living subjects and corpses, even if this technique has several criticisms: mainly, the staff should be highly specialized, working in high-throughput settings, able to handle high workloads and aware of health risks and the importance of the results. Thus, IgG/IgM serological tests have been developed, overcoming RT-qPCR duration, costs, and management, not requiring highly trained personnel. Nevertheless, serological tests present problems; the WHO recommends the use of these new point-of-care immunodiagnostic tests only in research settings. Furthermore, nothing has yet been published regarding the possibility of applying these methods during post-mortem investigations. In light of this scenario, in this review, we suggest a flow chart for the pathologist called on to ascertain the cause of death of a subject with historical and clinical findings of COVID-19 status or without any anamnestic, diagnostic, or exposure information. Indeed, the literature data confirmed the analytical vulnerabilities of the kits used for laboratory diagnosis of COVID-19, particularly during postmortem examinations. For these reasons, autopsy remains the gold standard method to ascertain the exact cause of death (from or with COVID-19 infection, or other causes), to consequently provide real data for statistical evaluations and to take necessary measures to contain the risks of the infection. Moreover, performing autopsies could provide information on the pathogenesis of the COVID-19 infection with obvious therapeutic implications

    The NADPH oxidase NOX2 as a novel biomarker for suicidality: evidence from human post-mortem brain samples

    Get PDF
    Recent evidence points towards a role of oxidative stress in suicidality. However, few studies were carried out on the sources of reactive oxygen species (ROS) in subjects with suicidal behaviour. We have previously demonstrated that the NADPH oxidase NOX2-derived oxidative stress has a major role in the development of neuropathological alterations observed in an animal model of psychosis. Here, we investigated the possible increase in NOX2 in post mortem brain samples of subjects who died by asphyctic suicide (AS) compared with controls (CTRL) and subjects who died by non-suicidal asphyxia (NSA). We found that NOX2 expression was significantly higher in the cortex of AS subjects than in the other two experimental groups. NOX2 immunostaining was mainly detected in GABAergic neurons, with a minor presence of NOX2-positive-stained cells in glutamatergic and dopaminergic neurons, as well as astrocytes and microglia. A sustained increase in the expression of 8-hydroxy-2’-deoxyguanosine, an indirect marker of oxidative stress, was also detected in the cortex of AS subjects, compared with CTRL and NSA subjects. A significant elevation in cortical interleukin-6 immunoreactivity in AS subjects suggested an involvement of cytokine-associated molecular pathways in NOX2 elevations. Our results suggest that the increase in NOX2-derived oxidative stress in the brain might be involved in the neuropathological pathways leading to suicidal behaviour. These results may open innovative insights in the identification of new pathogenetic and necroscopic biomarkers, predictive for suicidality and potentially useful for suicide prevention

    The NADPH oxidase NOX2 as a novel biomarker for suicidality: Evidence from human post mortem brain samples

    Get PDF
    Recent evidence points towards a role of oxidative stress in suicidality. However, few studies were carried out on the sources of reactive oxygen species (ROS) in subjects with suicidal behaviour. We have previously demonstrated that the NADPH oxidase NOX2-derived oxidative stress has a major role in the development of neuropathological alterations observed in an animal model of psychosis. Here, we investigated the possible increase in NOX2 in post mortem brain samples of subjects who died by asphyctic suicide (AS) compared with controls (CTRL) and subjects who died by non-suicidal asphyxia (NSA). We found that NOX2 expression was significantly higher in the cortex of AS subjects than in the other two experimental groups. NOX2 immunostaining was mainly detected in GABAergic neurons, with a minor presence of NOX2-positive-stained cells in glutamatergic and dopaminergic neurons, as well as astrocytes and microglia. A sustained increase in the expression of 8-hydroxy-2'-deoxyguanosine, an indirect marker of oxidative stress, was also detected in the cortex of AS subjects, compared with CTRL and NSA subjects. A significant elevation in cortical interleukin-6 immunoreactivity in AS subjects suggested an involvement of cytokine-associated molecular pathways in NOX2 elevations. Our results suggest that the increase in NOX2-derived oxidative stress in the brain might be involved in the neuropathological pathways leading to suicidal behaviour. These results may open innovative insights in the identification of new pathogenetic and necroscopic biomarkers, predictive for suicidality and potentially useful for suicide prevention

    Volatile organic compounds: instrumental and canine detections link an individual to the crime scene

    Get PDF
    Background: Whenever a crime is committed, forensic personnel are requested to collect every kind of evidence to establish the relationship between the suspects and the crime. When any evidence is accidentally destroyed or not found, there is one type of latent evidence that is always deposited at the crime scene: unique human scent. Recently, the use of trained canines to detect selective human scent at a crime scene has increased. To consolidate this kind of evidence, it is essential to have an exact knowledge and an awareness of the chemical signature of the volatile compounds that could indicate the presence of the alleged offender at the crime scene. This experimental study aims to detect the volatile organic compounds (VOCs) released from subjects who handled scent-articles to imprint their odor on. After handling, each scent-article was wrapped in sterile and VOC-free cotton gauzes for 48 h for secondary transfer. VOCs were detected by headspace/solid-phase microextraction-gas chromatography/mass spectrometry (HS/SPME-GC/MS) and well-trained dogs, at different time points (up to 15 days). Furthermore, the possibility of further DNA detection after contact was also investigated to propose a novel approach able to identify a subject from this latent forensic trace. Results: Data show that inter-individual human scent composition includes different VOCs, but dogs were able to discriminate the individual who touched the object at the crime scene. The dog training procedure showed excellent sensitivity (between 99.48 and 100%) and specificity (between 60 and 100%), having a positive predictive value (PPV) ranging between 97.94 and 100% and a negative predictive value (NPV) ranging between 85.71 and 100%. Preliminary work on DNA analysis released after contact yielded positive results, even if further studies are necessary, expanding the same experimentation to a larger sample with the aim of obtaining a statistically significant result. Conclusion: Data show that human scent is a good source of VOCs and a good target for canine training. The well-trained dog represents a specialized biological device able to discriminate personal human odor from any contaminants in the mixture detected by instrumental analysis. Furthermore, this study proposes the use of human scent as a forensic latent trace for DNA profiling

    Anabolic Androgenic Steroids: Searching New Molecular Biomarkers

    Get PDF
    Even if anabolic androgenic steroid (AAS) abuse is clearly associated with a wide spectrum of collateral effects, adolescents and athletes frequently use a large group of synthetic derivatives of testosterone, both for aesthetic uses and for improving performance. Over the last few years, the development of MicroRNA (miRNA) technologies has become an essential part of research projects and their role as potential molecular biomarkers is being investigated by the scientific community. The circulating miRNAs detection as a diagnostic or prognostic tool for the diagnosis and treatment of several diseases is very useful, because with a minimal quantity of sample (peripheral blood), miRNAs are very sensitive. Even more, miRNAs remain stable both at room temperature and during freeze-thaw cycles. These characteristics highlight the important role of miRNAs in the near future as new tools for anti-doping. The article provides a systematic review and meta-analysis on the role of miRNAs as new potential molecular biomarkers of AAS use/abuse. Particularly, this paper analyzed the “miRNA signature” use as biomarkers for health disorders, focusing on the organ damages which are related to ASS use/abuse. Moreover, this review aims to provide a future prospect for less invasive or non-invasive procedures for the detection of circulating miRNA biomarkers as doping assumption signaling
    • 

    corecore