4,884 research outputs found

    High-performance thermionic converter Quarterly progress report, 13 Aug. - 13 Nov. 1965

    Get PDF
    Fabrication and testing of cesium loaded thermionic converter test vehicl

    High-performance thermionic converter Quarterly progress report, 13 Nov. 1965 - 13 Feb. 1966

    Get PDF
    Stability and optimization parameters of cesium vapor thermionic converters studied in high performance long life equipment fabrication projec

    High-performance thermionic converter quarterly progress report, 13 may - 13 aug. 1965

    Get PDF
    Coating stability, collector fabrication, and high temperature brazing for radiator heat rejection devices - high performance thermionic converte

    Sustaining Educational Reforms in Introductory Physics

    Full text link
    While it is well known which curricular practices can improve student performance on measures of conceptual understanding, the sustaining of these practices and the role of faculty members in implementing these practices are less well understood. We present a study of the hand-off of Tutorials in Introductory Physics from initial adopters to other instructors at the University of Colorado, including traditional faculty not involved in physics education research. The study examines the impact of implementation of Tutorials on student conceptual learning across eight first-semester, and seven second-semester courses, for fifteen faculty over twelve semesters, and includes roughly 4000 students. It is possible to demonstrate consistently high, and statistically indistinguishable, student learning gains for different faculty members; however, such results are not the norm, and appear to rely on a variety of factors. Student performance varies by faculty background - faculty involved in, or informed by physics education research, consistently post higher student learning gains than less-informed faculty. Student performance in these courses also varies by curricula used - all semesters in which the research-based Tutorials and Learning Assistants are used have higher student learning gains than those semesters that rely on non-research based materials and do not employ Learning Assistants.Comment: 21 pages, 4 figures, and other essential inf

    Higher-Derivative Quantum Cosmology

    Full text link
    The quantum cosmology of a higher-derivative derivative gravity theory arising from the heterotic string effective action is reviewed. A new type of Wheeler-DeWitt equation is obtained when the dilaton is coupled to the quadratic curvature terms. Techniques for solving the Wheeler-DeWitt equation with appropriate boundary conditions shall be described, and implications for semiclassical theories of inflationary cosmology will be outlined.Comment: 11 pages TeX. A term has been removed from equation (13

    Ion structure factors and electron transport in dense Coulomb plasmas

    Full text link
    The dynamical structure factor of a Coulomb crystal of ions is calculated at arbitrary temperature below the melting point taking into account multi-phonon processes in the harmonic approximation. In a strongly coupled Coulomb ion liquid, the static structure factor is split into two parts, a Bragg-diffraction-like one, describing incipient long-range order structures, and an inelastic part corresponding to thermal ion density fluctuations. It is assumed that the diffractionlike scattering does not lead to the electron relaxation in the liquid phase. This assumption, together with the inclusion of multi-phonon processes in the crystalline phase, eliminates large discontinuities of the transport coefficients (jumps of the thermal and electric conductivities, as well as shear viscosity, reported previously) at a melting point.Comment: 4 pages, 2 figures, REVTeX using epsf.sty. Phys. Rev. Lett., in pres

    The Origin of Structures in Generalized Gravity

    Get PDF
    In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    Ground-state dispersion and density of states from path-integral Monte Carlo. Application to the lattice polaron

    Full text link
    A formula is derived that relates the ground-state dispersion of a many-body system with the end-to-end distribution of paths with open boundary conditions in imaginary time. The formula does not involve the energy estimator. It allows direct measurement of the ground-state dispersion by quantum Monte Carlo methods without analytical continuation or auxiliary fitting. The formula is applied to the lattice polaron problem. The exact polaron spectrum and density of states are calculated for several models in one, two, and three dimensions. In the adiabatic regime of the Holstein model, the polaron density of states deviates spectacularly from the free-particle shape.Comment: 8 pages, 9 figure
    • …
    corecore