206 research outputs found

    Low-lying gravitational modes in the scalar sector of the global AdS_4 black hole

    Full text link
    We compute the quasinormal frequencies corresponding to the scalar sector of gravitational perturbations in the four-dimensional AdS-Schwarzschild black hole by using the master field formalism of hep-th/0305147. We argue that the non-deformation of the boundary metric favors a Robin boundary condition on the master field over the usual Dirichlet boundary condition mostly used in the literature. Using this Robin boundary condition we find a family of low-lying modes, whose frequencies match closely with predictions from linearized hydrodynamics on the boundary. In addition to the low-lying modes, we also see the usual sequence of modes with frequencies almost following an arithmetic progression.Comment: 23 pages, 3 figures; v2: typos corrected; v3: algebraic derivation of hydrodynamic modes corrected, results unaltere

    Schwinger-Keldysh Propagators from AdS/CFT Correspondence

    Get PDF
    We demonstrate how to compute real-time Green's functions for a class of finite temperature field theories from their AdS gravity duals. In particular, we reproduce the two-by-two Schwinger-Keldysh matrix propagator from a gravity calculation. Our methods should work also for computing higher point Lorentzian signature correlators. We elucidate the boundary condition subtleties which hampered previous efforts to build a Lorentzian-signature AdS/CFT correspondence. For two-point correlators, our construction is automatically equivalent to the previously formulated prescription for the retarded propagator.Comment: 16 pages, 1 figure, references added; to appear in JHE

    Low frequency quasi-normal modes of AdS black holes

    Get PDF
    We calculate analytically low frequency quasi-normal modes of gravitational perturbations of AdS Schwarzschild black holes in dd dimensions. We arrive at analytic expressions which are in agreement with their counterparts from linearized hydrodynamics in Sd2×RS^{d-2}\times \mathbb{R}, in accordance with the AdS/CFT correspondence. Our results are also in good agreement with results of numerical calculations.Comment: 14 page

    Low-Energy Theorems from Holography

    Full text link
    In the context of gauge/gravity duality, we verify two types of gauge theory low-energy theorems, the dilation Ward identities and the decoupling of heavy flavor. First, we provide an analytic proof of non-trivial dilation Ward identities for a theory holographically dual to a background with gluon condensate (the self-dual Liu--Tseytlin background). In this way an important class of low-energy theorems for correlators of different operators with the trace of the energy-momentum tensor is established, which so far has been studied in field theory only. Another low-energy relationship, the so-called decoupling theorem, is numerically shown to hold universally in three holographic models involving both the quark and the gluon condensate. We show this by comparing the ratio of the quark and gluon condensates in three different examples of gravity backgrounds with non-trivial dilaton flow. As a by-product of our study, we also obtain gauge field condensate contributions to meson transport coefficients.Comment: 32 pages, 4 figures, two references added, typos remove

    Spin-Spin and Spin-Orbit Interactions in Strongly Coupled Gauge Theories

    Full text link
    We evaluate the spin-orbit and spin-spin interaction between two fermions in strongly coupled gauge theories in their Coulomb phase. We use the quasi-instantaneous character of Coulomb's law at strong coupling to resum a class of ladder diagrams. For N=4{\cal N}=4 SYM we derive both weak and strong coupling limits of the the spin-orbit and spin-spin interactions, and find that in the latter case these interactions are subleading corrections and do not seriously affect the deeply bound Coulomb states with large angular momentum, pointed out in our previous paper. The results are important for understanding of the regime of intermediate coupling, which is the case for QCD somewhat above the chiral transition temperature

    Perturbations of anti-de Sitter black holes

    Full text link
    I review perturbations of black holes in asymptotically anti-de Sitter space. I show how the quasi-normal modes governing these perturbations can be calculated analytically and discuss the implications on the hydrodynamics of gauge theory fluids per the AdS/CFT correspondence. I also discuss phase transitions of hairy black holes with hyperbolic horizons and the dual superconductors emphasizing the analytical calculation of their properties.Comment: 25 pages, 4 figures, prepared for the proceedings of the 5th Aegean Summer School "From Gravity to Thermal Gauge Theories: the AdS/CFT Correspondence," Milos, Greece, September 2009

    Thermal Correlators in Little String Theory

    Get PDF
    We calculate, using holographic duality, the thermal two-point function in finite temperature little string theory. The analysis of those correlators reveals possible instabilities of the thermal ensemble, as in previous discussions of the thermodynamics of little string theory. We comment on the dependence of the instability on the spatial volume of the system.Comment: 13 page

    ROBustness In Network (robin): an R Package for Comparison and Validation of Communities

    Get PDF
    In network analysis, many community detection algorithms have been developed. However, their implementation leaves unaddressed the question of the statistical validation of the results. Here, we present robin (ROBustness In Network), an R package to assess the robustness of the community structure of a network found by one or more methods to give indications about their reliability. The procedure initially detects if the community structure found by a set of algorithms is statistically significant and then compares two selected detection algorithms on the same graph to choose the one that better fits the network of interest. We demonstrate the use of our package on the American College Football benchmark dataset

    Aspects of higher curvature terms and U-duality

    Full text link
    We discuss various aspects of dimensional reduction of gravity with the Einstein-Hilbert action supplemented by a lowest order deformation formed as the Riemann tensor raised to powers two, three or four. In the case of R^2 we give an explicit expression, and discuss the possibility of extended coset symmetries, especially SL(n+1,Z) for reduction on an n-torus to three dimensions. Then we start an investigation of the dimensional reduction of R^3 and R^4 by calculating some terms relevant for the coset formulation, aiming in particular towards E_8(8)/(Spin(16)/Z_2) in three dimensions and an investigation of the derivative structure. We emphasise some issues concerning the need for the introduction of non-scalar automorphic forms in order to realise certain expected enhanced symmetries.Comment: 26 pp., 15 figs., plain te

    Deconstructing holographic liquids

    Full text link
    We argue that there exist simple effective field theories describing the long-distance dynamics of holographic liquids. The degrees of freedom responsible for the transport of charge and energy-momentum are Goldstone modes. These modes are coupled to a strongly coupled infrared sector through emergent gauge and gravitational fields. The IR degrees of freedom are described holographically by the near-horizon part of the metric, while the Goldstone bosons are described by a field-theoretical Lagrangian. In the cases where the holographic dual involves a black hole, this picture allows for a direct connection between the holographic prescription where currents live on the boundary, and the membrane paradigm where currents live on the horizon. The zero-temperature sound mode in the D3-D7 system is also re-analyzed and re-interpreted within this formalism.Comment: 21 pages, 2 figure
    corecore