5,026 research outputs found

    Interacting turbulent boundary layer over a wavy wall

    Get PDF
    The two dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances is considered. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. The problem cannot be solved without inclusion of interaction effects due to the occurrence of the separation singularity in classical boundary layer methods. The interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model. Results are presented for flow over a train of up to six waves for Mach numbers of 10 and 32 million/meter, and wall temperature rations (T sub w/T sub 0) of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given. Detailed results on the influence of small protuberances on surface heating by boundary layers are presented

    Supersonic separated turbulent boundary - layer over a wavy wall

    Get PDF
    A prediction method is developed for calculating distributions of surface heating rates, pressure and skin friction over a wavy wall in a two-dimensional supersonic flow. Of particular interest is the flow of thick turbulent boundary layers. The surface geometry and the flow conditions considered are such that there exists a strong interaction between the viscous and inviscid flow. First, using the interacting turbulent boundary layer equations, the problem is formulated in physical coordinates and then a reformulation of the governing equations in terms of Levy-Lees variables is given. Next, a numerical scheme for solving interacting boundary layer equations is adapted. A number of modifications which led to the improvement of the numerical algorithm are discussed. Finally, results are presented for flow over a train of up to six waves at various flow conditions

    Numerical study of supersonic turbulent flow over small protuberances

    Get PDF
    Supersonic turbulent boundary layers over two-dimensional protuberances are investigated, using the numerical finite difference alternating direction implicit (ADI) method. The turbulence is modeled mathematically. The turbulence is represented here by the eddy viscosity approach. The turbulent boundary layer structure as well as an interest in thick boundary layers and much larger protuberance heights than in the laminar case lead to new difficulties. The problems encountered and the means to remove them are discussed

    The separated turbulent boundary layer over a wavy wall

    Get PDF
    A study and application of the fourth order spline collocation procedure, numerical solution of boundary layer like differential equations, is presented. A simple inversion algorithm for the simultaneous solution of the resulting difference equations is given. Particular attention is focused on the boundary condition representation for the spline second derivative approximations. Solutions using the spline procedure, as well as the three point finite difference method, are presented for several model problems in order to assess and improve the spline numerical scheme. Application of the resulting algorithm to the incompressible laminar self similar boundary layer equations is presented

    Advanced theoretical and experimental studies in automatic control and information systems

    Get PDF
    A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included

    Decision-making for unmanned aerial vehicle operation in icing conditions

    Get PDF
    With the increased use of unmanned aerial systems (UAS) for civil and commercial applications, there is a strong demand for new regulations and technology that will eventually permit for the integration of UAS in unsegregated airspace. This requires new technology to ensure sufficient safety and a smooth integration process. The absence of a pilot on board a vehicle introduces new problems that do not arise in manned flight. One challenging and safety-critical issue is flight in known icing conditions. Whereas in manned flight, dealing with icing is left to the pilot and his appraisal of the situation at hand; in unmanned flight, this is no longer an option and new solutions are required. To address this, an icing-related decision-making system (IRDMS) is proposed. The system quantifies in-flight icing based on changes in aircraft performance and measurements of environmental properties, and evaluates what the effects on the aircraft are. Based on this, it determines whether the aircraft can proceed, and whether and which available icing protection systems should be activated. In this way, advice on an appropriate response is given to the operator on the ground, to ensure safe continuation of the flight and avoid possible accidents
    corecore