General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

```
University of Cincinnati, Cincinnati, Ohio 45221
```


THE SEPARATED TURBULENT BOUNDARY LAYER
 OVER A WAVY WALL

```
(NASA-CB-1552&:) TEE SEPABATED TUREULENT N78-12016
bountaRy LAYEE CVEB & havy Wall final
Report, 1 Jul. 1975 - 30 Sef. 1977
(Cincinnati Uriv.) 21 P HC AC2/MF AC1 UnClas
CSCL O1A G3/02 53612
```

Final Report,
covering the period
July 1, 1975 - September 30, 1977

NASA Grant No. NSG 1208

Principal Investigators are A. Polak and M.J. Werle, Department of Aerospace Engineering and Applied Mechanics.

The NisA Technical Officer of this grant is Mr. James C. Dunavant, NASA Langley Research Center, Hampton, Virginia 23665.

THE SEPARATED TURBULENT BOUNDARY

LAYER OVER A WAVY WALL

NASA Grant No. NSG 1208

Final Report
covering the period
July 1, 1975 - September 30, 1977
by
A. Polak and M.J. Werle
University of Cincinnati, Cincinnati, Ohio

This research was concerned with the development of a prediction method for calculating detailed distributions of surface heating rates and pressures over a corrugated wall, due to flow of a two-dimensional supersonic turbulent boundary layer. Primary attention was given to the turbulent boundary layers which are thick relative to the wave amplicude and at the same time the ratio of the wave amplitude to the wave length is sufficiently high so that a strong interaction develops between the viscous and inviscid regions. This manifests itself in the variation in surface pressure which may be an order of magnitude different from the one calculated by purely inviscid methods. Also, under these flow conditions, separation regions may develop between the peaks of the waves. This means that the nature of the problem is such that classical boundary layer
methods are not suitable to effect the solution, simply because the interaction is a first order effect.

To solve this problem effectively, an interacting boundary layer approach was employed. Its essence is that the pressure distribution is not prescribed by the body surface profile, but calculated simultaneously with the viscous flow. A time-like relaxation method using an implicit finite-difference numerical code was adopted. The turbulence was represented by the two layer eddy viscosity model of Cebeci and Smith. An attempt was made to account for the surface curvature effect on the turbulent structure by employing a correction to the eddy viscosity model proposed by Bradshaw. The present predictions were compared with independent experimental and theoretical results. The predictions, in terms of pressure and heating levels, compare reasonably well with the measured data when the curvature correction is included.

The complete details, concerning the formulation of the problem, the numerical method and the discussion of the results for test cases with Mach numbers of 2.5 and 3.5 , Reynolds numbers $R e_{\infty}=10.8 \times 10^{6} / \mathrm{mm}$ and $32.4 \times 10^{6} / \mathrm{mm}$, wall-to-stagnation temperature ratio $T_{W} / T_{o}=0.40$ and 0.81 , and ratio of wave amplitude to wave large from $1 / 96$ to $1 / 12$ are presented in a self-contained University of Cincinnati technical report, Report No. AFL 77-11-36 (Reference 1). The results of this research effort were also presented in a paper at the ASME Winter Annual Meeting, Atlanta, Georgia, November 1977. This paper appears as an ASME publication 77-WA/HT -28 (Reference 2). While this work was in progress partial results of this research were presented at the 5 th U.S. Air Force/Federal

Republic of Germany Data Exchange Agreement Meeting, Wright Patterson Air Force Base, Ohio, 28-29 April 1976 (Reference 3).

The present investigation lead also to two side efforts, carried out under partial support of the NASA Grant No. NSG 1208. These efforts were aimed at achieving higher accuracy and efficiency in the numerical schemes, applicable to problems of present interest. The first of these studies was concerned with developing a numerical scheme for solving viscous flow problems with regions of predominantly inviscid flow (like the outer region of very thick turbulent boundary layer). This effort resulted in a new second order accurate exponentia: box scheme. It was shown that this method provides a definite advantage over other numerical schemes. The details of this work were published as a University of Cincinnati technical report, Report No. AFL 77-9-34 (Reference 4) and also resulted in a Master of Science Thesis. A Technical Note summarizing this work was submitted for publication to the AIAA Journal. A copy is attached herein as Appendix A. The second study aimed at achieving a higher efficiency in calculating laminar and turbulent boundary layers. The fourth order cubic spline method developed recently by Rubin was combined with the Davis Coupled Algorithm for solving simultaneously the boundary layer equations. The details of this work, with application to a set of model flow problems and to the incompressible laminar boundary layer equations will appear as a University of Cincinnati Technical Report (Reference 5) in December 1977. This work appears also as a Master of Science Thesis; the abstract of this Thesis is attached herein as Appendix B.

In conclusion, it car be stated that the major objective of the work under the present NASA Grant No. NSG 1208 was fulfilled. A method capable of handing strongly interacting flows was successfully adapted to solve the problem of flow of thick turbulent boundary layers over a wavy wall, including multiple separation regions. A supportive effort resulied in developing numerical schemes, which in the future could enhance the accuracy and efficiancy of the present state of the interacting numerical algorithm.

The cumulative list of publications resulting during the course of investigation under the support of the NASA Grant No. NSG 1208 is attached under the heading List of References.

LIST OF REFERENCES

1. Polak, A., and Werle, M.J., "Supersonic Separated Turbulent Boundary-Layer Over a Wavy Wall", Report No. AFL 77-11-36, November 1977, Dept. of Aerospace Engineering and Applied Mechanics, University of Cincinnati, Cincinnati, Ohio.
2. Polak, A., and Werle, M.J., "Interacting Turbulent BoundaryLayer Over a Wavy Wall", ASME Paper $77-W A / H T-28$. Presented at the ASME Winter Annual Meeting, Atlanta, Georgia, Nov. 27-Dec. 2, 1977.
3. Polak, A., Werle, M.J., and Bertke, S.D., "Numerical Study of Hypersonic Turbulent Interacting Boundary Layers", Proceedings of the 5 th U.S. Air Force/Federal Republic of Germany Data Exchange Agreement Meeting, Technical Report AFFDL-TR-77-61, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio 45433.
4. El-Mistikawy, T., and Werle, M.J., "Numerical Methods for Inviscid/Viscous Fluid Flows", Report No. AFL 77-9-34, September 1977, Dept. of Aerospace Engineering and Applied Mechanics, University of Cincinnati, Cincinnati, Ohio. Also Master of Science Thesis, submitted by Mr. El-Mistikawy to the Department of Aerospace Engineering and Applied Mechanics, June 1977.
5. Vacca, G., Werle, M.J., and Polak, A., "An Application of Fourth Order Spline Collocation Procedure to Boundary Layer Like Problems", Report No. AFL 77-12-37, December 1977, Dept. of Aerospace Engineering and Applied Mechanics, University of Cincinnati, Cincinnati, Ohio. Also Master of Science Thesis, submitted by Mr. G. Vacca to the Department of Aerospace Engineering and Applied Mechanics, December 1977.

APPENDIX A

A NUMERICAL METHOD FOR BOUNDARY LAYERS NITH BLOWING

- THE EXPONENTIAL BOX SCHEVE ${ }^{+}$

T.M. El Mistikawy* and M.J. Werle"

Department of Aerospace Engineering and Apolied Mechanics University of Cincinnati Cincinnati, Onio

INTRODUCTION

Solutions of boundary layer Elows in the presence of massive injection through a porous surface are complicated by the multistructure nature of the flow field. The flow can be divided into two distinguishable regions (see Refs. 1-4l; a basically inviscid turning region near the blowing surface that occupies most of the boundary layer and a thin viscous region in which diffusion effects play a significant role in adjusting the boundary layez fiow to the free stream conditions. Similar flow structure and complication occur int a wicie class uf Viscous interaction flow problens (Fefs. 5 tircugh. 2) where a thin viscous layer actively induces a significant displacement effect to a relatively thick inviscid ficw layer. The change in the character of the Elow from the viscous to inviscid regions is difficult to accurately capture numerically with a

[^0]single finite difference representation giving rise to the introduction of various schemes to eliminate numerical. . "instabilities" ranging from variable grid spacings (Re乞. 10) to artificial viscosity concepts (Refs. 11 and 12).

The present study takes a different approach and presents a new numerical scheme that should be useful for solution of a wide class of inviscid/viscous flcws. The approach is hased on two points; first, that the difficulties encountered ". previous schemes can be traced to a misrepresentation of convection effects normal to the principle boundary layer direction (see Ref. 13) and, second, that exponential difference operator concepts (Refs. 14 through 18) can be combined with Keller's box scheme approach (Ref. 19) to produce a stable second order accurate finite difference scheme for such convection-difiusion problems. The technique developed here is demonstrated through application to the solution of the Falkner-Skan equations for self similar boundary layer flow with massive blowing at the surface.

GOVERNING EQUAIIONS AND SOLUTION MET::OD

The governing equations are taken to be the Falkner-Skan equations with blowing and given here in terms of the Gortler variable n (see Ref. 20) as

$$
\begin{align*}
& v_{n}+z=0 \tag{1a}\\
& z_{n n}-v F_{n}+8\left(1-z^{2}\right)=0 \tag{1b}
\end{align*}
$$

with

$$
\begin{equation*}
F(0)=0 ; \quad v(0)=v_{w} ; \tag{2a}
\end{equation*}
$$

and

$$
\begin{equation*}
F \rightarrow 1 \text { as } n \rightarrow \infty \tag{2b}
\end{equation*}
$$

where V_{w} is related to the physical injection velocity, Frepresents the normalized longitudinal velocity component, and s the inviscid pressure gradient parameter.

As in nearly all numerical solution methods, the nonlinear nature of equation (1b) is addressed indirectly. An iterative approach is used to Eirst write this in the form

$$
\begin{equation*}
F_{n n}-(a+b) F_{n}+a b F=c \tag{3}
\end{equation*}
$$

where a, b are obtained from a previous iteration and are given as

$$
\begin{equation*}
a \equiv V / 2+\sqrt{(V / 2)^{2}+s F} \tag{4a}
\end{equation*}
$$

$$
\begin{equation*}
b=V / 2-\sqrt{(V / 2)^{2}+3 F} \tag{4b}
\end{equation*}
$$

with $c=-3$

Whereas classical finite diEference techniques seek solutions
of equation (3) using Taylor series to genezate difinerence approximations to derivatives over a small grid distance, a different approach is employed here. Following the lead of references $14-18$, the ccefticients of equation (3) are first approximated over a small grid distance and the resulting equation invegrated exactly. With reference to the typical sequential grid points shown in Zigure 1 , the solution to equation (3) in the interval between points 1 and 2 is given as

$$
\begin{equation*}
v_{1,2}=A_{1} e^{a_{1} \eta}+B_{1} e^{b_{1} \eta}+f_{1} \tag{5}
\end{equation*}
$$

where $f_{1}=c_{1} / a_{1} b_{1}$ and the ccefzicients a_{1} and b_{1} are evaluated at the midpoints of the grid indicated.* Use of equation (5) along with a similar expression for $F_{2,3}$ in the interval between points 2 and 3 and the two continuity conditions that $F_{2+}=F_{2-}$ and $F_{\eta_{2+}}=F_{\eta_{2-}}$ makes it possible to eliminate the arbitrary constants A_{i} and B_{i}. The resulting difference equation is

$$
\begin{equation*}
a_{1} F_{2}-\left(s_{1}+3_{2}\right) F_{2}+a_{2} F_{3}=\left(a_{1}-s_{1}\right) \tilde{1}_{1}+\left(a_{2}-s_{2}\right) \varepsilon_{2} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{1}=\left(a_{1}-i \cdot\right) e^{b_{1} \Delta \eta_{1} / \gamma_{1}} ; \quad a_{2}=\left(a_{2}-b_{2}\right) e^{-a_{2} \Delta \eta_{2} / \gamma_{2}} \tag{Ta}\\
& s_{1}=\left[a_{1}-\left(1-\gamma_{1}\right) b_{1}\right] / \gamma_{1} ; \quad \beta_{2}=\left(a_{2}\left(1-\gamma_{2}\right)-b_{2}\right] / \gamma_{2} \tag{Tb}\\
& r_{1}=1-e^{-\left(a_{1}-b_{1}\right) \Delta \eta_{1}} ; \quad r_{2}=1-e^{-\left(a_{2}-b_{2}\right) \Delta \eta_{2}} \tag{7c}
\end{align*}
$$

Equation (6) is a three point difference approximation to equation (3) and, as such, produces a tridiagonal set of algebraic equations that are straightforward to solve using standard techniques. In addition, this difference relation possesses all the favorable properties of the exponential schemes and the "2-point" or "box-scheme" approaches. Equation (6) is found to be always diagonally dominant for $a b<0$, it is second order accurate in Δn_{i} throughout the diffusion region, and most

[^1]importantly, it automatically and smoothly switches to a second order accurate windward difference scheme as the normal convection velocity, V (as zepresented by the term $a+b$), becomes farge negative or positive.

The companion numerical solution of the continuity equation is obtained substituting equation (5) directly into equation (la) and integrating to obtain the local relation

$$
\begin{equation*}
v_{2}=v_{1}+A_{1}\left(1-e^{a_{1} \Delta n_{1}}\right) / a_{1}+B_{1}\left(1-e^{b_{1} \Delta n_{1}}\right) / b_{1}-f_{1} \Delta n_{1} \tag{8}
\end{equation*}
$$

where A_{1} and B_{1} are obtained in terms of F_{1} and F_{2} using equaition (5).

RESULTS AND DISCUSSION

The exponential box (EB) scheme describec above has been applied arid verified for a wide zange of test cases (see Ref. 13) with typical results presented here. Typical longizudinal velocity profiles are shown in Eigure 2 for blowing at an axisymmetric stagnation point $(z=0.3)$. The massive blcwing case $\left(V_{W}=25\right)$ is similar to that presented by Liu and Chiu (Rez. 10) except that in that study, compressible heating effects were accounted for due to a cold wall boundary condition. The present case corresponds to the case of an adiabatic wall temperature and was chosen to allow isolated study of the E3 scheme for the momentum and continuity equations alone.

In an attempt to demonstuate the multistructure nature of
the flow fiele, Figuze 3 shows the individual component con-
tributions to the governing momentum baiance equation (ib) in
the criticai region of the flow (45 $\leq 7 \leq 55$). Clearly the
flow represents an inviscid process below $n<48$ where the normal convection and pressure gradient effects totally balance one another. Only above this region does the diEfusion effect play 1 significant zole. With so much of the Elow basidally inviscid in nature, it should not be surprising to find that diffusion-type uumerical schemes (such as the classical three point central difference scheme) have difficulty representing this flow. Such dizficulties usually manifest themselves in terms of non-monotonic (jagged) veloeity distributions (or local "wiggles."). This point is discussed further in Ref. 13 wi.th the conclusion" that this difficulty is largely due to a failure of central difference schenes to adequately model the normal convection effects. It is shown in Ref. 13 that a "windward" representation of the convection terms is necessary to properly represent such flows. The exponential box scheme developed here automaticaliy and smoothly switches from a second order accurate diffusion-type scheme in diftusion regions ($n>48$) to a second order acc'urate windward scheme in normal convection dominated regions ($n<48$), thus encountering no numezical diEticulties or "instabilities" even for a constant grid mesh as per Ref. 10. The accuracy and reliability of the current approach is attested to in $\overline{\text { Iigure }} 4$ where the zasults of a typical step size stuciy is shown for 3 points in the critical region of the flow field, $45 \leq 7 \leq 55$. Here the E3 scheme is seen to maintain second orier accuracy (i.e. produce a straightiine variazion with $\Delta \eta^{2}$) Eor a uniform step size $\Delta 7$ as large as 2 while a central difference schere (CD) rapidiy loses its second order nature. Reference 13 presents a more detailed comparison and shows the current approach to be superior to four other difzerance methods as well.

REFERENCES

1．Watson，E．G．，＂The Equation of Similaz Profiles in Boundary Layer Theory with Strong 3lowing，＂？roc．Roy．Soc．Ser．A， 294 （1966），pp．208－234．

2．Kubota，T．，Fermandez，F．Z．，＂Boundary Layer Fiows with Large Injection and Heat Transfer，＂AIAA Journal，Vol．6，No．1， Jan．1968，pp．22－28．

3．Kassoy，D．R．，＂On Laminar Eoundary Layer Blow－Off，＂SIAM Journal of Applied Math．，Vol．18，No．1，Jan．1970，pp．29－40．

4．Libby，P．A．，＂Numerical Analysis of Stagnation Point Flows with Massive 3lowing，＂AIAA Joumal，Vol．8，No．11，Mov，1970， pp．2095－2096．

5．Stewartson，K．，＂Multistructured Boundary Layers on Fiat Plates and Related Bedies，＂appearing in ADVANCES in APFLIED MECHANICS，Vol．14，Academic Press，San Francisco， 1974.

6．Davis，R．T．and Werle，M．J．，＂Numerical Methods for Interacting Boundary Layezs，＂Invited Lecture， 1976 Feat Transfer and Fluid Mechanics Institute，Univ．of Calif．at Davis，June 21－23， 1976．See also，Dept．of Aerospace Engineering，Univ．of Cincinnati kiv．No．AFL 76－8－23，August 1976.

7．Burggrai，O．R．，＂Some Recent Developments in Computation of ＂iscous Flows，＂Invited Iecture，Fifth Int．Conz．on Numerical Methods in Fluid Dynamics，appearing in LECTURE NOTES in PHYSICS， Vol．59，Springer－Verlag， 1975.

8．Sychev，V．V．，＂On Laminar Separation，＂Mekhanika Zhidkosti i Gaza，No．3，1972，pp．47－59．

9．：assiter，A．$\overline{\text { a }}$ ，＂Boundary－Zayer Flow Near the Trailing Edge of a Elat Plate，＂SIAM Journal of Applied Math．，Vol．18， 1370，20．241－257．

10．Liu，T．M．，Chiu，H．H．，＂Fast and Stable Numerical Method for Boundary Layer Flow with Massive Blowing，＂AIAA Jouznal， 1976，pp．114－116．

11．Roache，P．J．，＂Computational Fluid Dynamics，＂Hermosa Publishers， Albuquerque，NM， 1976.
 Multidimensional compressible Navier－Stokes equations，＂ Rept．M911363－6，United Aircraft Res．Labs．，Nov． 1973.

13．E1 Mistikawy，Z．M．and Neェ1e，M．J．，＂Numezical Meざods Eoz Inviscid／Viscous Fluid Flows，＂University of Cincinnati，Dept． of Aezospace Engineering Rept．No．AFL 77－9－34，Sept． 1977.
14. Allen, D.N. de G. and Southwell, R.V., "Relaxation Methods Applied to Determine the Motion in Two Dimensions of a Viscous Fluid Fast a Fixed Cylinder," Quart. Jour. Mech. and Applied Math., Vol. 8, 1955, pp. 129-145.
15. Dennis, S.C.R., "Finite Difference Associated with Second-Order Differential Equations," Quart. Jour. Mech. and Applied Math., Vol. 23, 1960, Pp. 487-507; see also "The Numerical Solution of the Vorticity Transport Equation," appearing in Lecture Notes in Physics, Vol. 19, pp. 120-129, 1973, Sprincer-Veriag.
16. Pruess, Steven A., "Solving Linear Bcundary Value problems by Approximating the Coefficients," Math. of Comp., Vol. 27, 1973, pp. 551-561.
17. Rose, Milton E., "Weak-Element Approximations to Elliptic Differential Equations," Numer. Math., Vol. 24, 1975, pp. 185-204.
13. Roscoe, D. F., "New Me chods for the Derivation of Stable Difference Representations for Differential Equations," J. Inst. Maths. Applics., vol. 16, 1975, pp. 291-301.
19. Keller, $\mathrm{H} .3 .$, "Numerical Methods for Two-Point Boundary Value Problems," Blaisdel Publishing Co., 1968.
20. Rosenhead, L., (editor), LAM: IAR BOUNDARY LAYZPS, oxford at the Carendon Press, 1963, Great Britain.
Figure 1 Nomenclature and Grid Geometry
Figure 2 Iongitudinal Velocity Profiles
Figure 3 Momentum Balance Components
Figure 4 Zrror Assessment

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B

AN APPLICATION OF FOURTH ORDER SPLINE COLLOCATION

 PROCEDURES TO BOUNDARY LAYER LIKE FLOWS
A thesis submitted to the

Department of Aerospace Engineering and Applied Mechanics College of Engineering Division of Graduate Studies UNIVERSITY OF CINCINNATI
in partial fulfillment of the requirements for the degree of

Master of Science

1977
by

GAETANO VACCA
B.Sc. in Mech.E., Universita' Degli Studi di Bari 1974

ABSTRACT

A study and application of the fourth-order spline collocation procedure, numerical solution of boundary laver like differential equations, is presented. A simple inversion algorithm (represting a fourth-order version of the Davis Coupled Scheme) for the simultaneous solution of the resulting difference equations is given. Particular attention is focused on the boundary condition representation for the spline second-derivative approximations. Solutions using the spline procedure, as well as the three-point finite difference method, are Fresented for several model problems in order to assess and improve the spline numerical scheme. Application of the resulting algorithm to the incompressible laminar self similar boundary layer equations is presented.

[^0]: † This work was partially supported by the NASA Iangley Pesearch Center under Grant No. NSG 1208 and the Air Force Flight Funamics Laboratory Contract No. F33615-76-C-3091.

 * Graduate Research Assistant.
 ** ProEessor, Currently Chief, Gas Eynamios Section, United Technologies Pesearch Center, : :artミord, Conn. Member AIAA.

[^1]: * The use of two points to generate the basic relations for this scheme aligns it with the $30 x$ Scheme techniques os keller, Ref. (19); hence the term "exponential box-scheme" emerges.

