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SUPERSONIC SEPARATED TURBULENT BOUNDARY~

IAYER OVER A WAVY WALL

by

A. Polak and M.J. Werle

University of Cincinnati

SUMMARY

This research is concerned with the development of a pre-
diction method for calculating detailed distributions of surface
heating rates, pressure and skin friction over a wavy wall in
a two-dimensional supersonic flow. Of particular interest is
the flow of thick turbulent boundary layers. The surface
geometxry and the flow conditions considered are such that there
exists a strong interaction between the viscous and inviseid
flow. First, using the interacting turbulent~-boundary layer
equations, the problem is formulated in physical coordinates
and then a reformulation of the governing equations in terms of
Levy-Lees variables is given. ©Nexi, a numerical scheme for
solving interacting boundary layer eguations is adapted. A
number of modifications which led to the improvement of the
numerical algorithm are discussed. Finally, resuUlts are presented
for flow over a train of up to six waves at various flow |
conditions. Limited comparisons with independent experimental

and analytical results are also given.
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NOMENCLATURE

Amplitude.

Eddy viscosity damping function.

® %2
u_ /2.

<

Skin friction ccefficient, T:/p
Constant pressure specific heét.

Normalized longitudinal velocity, F = u/ue.
Normalized total enthalpy, g = H/He.

Heat transfer coefficient.

Nondimensional total enthalpy, H = H*/u*z.
Constants in eddy viscosity models. )
Viscosity parameter, £=pu/peue .

Mixing length.

Reference length.

Mach number.

% ok %2
Nondimensional static pressure, D = p /pco u .

=]

Prandtl number.

Turbulent Prandtl number.

Nondimensional turbulent heat flux rate.
Reynolds number based on reference viscosity,

® & %2 %
Rer = Remuw/ur(um /CP).

Reynolds number based on free stream viscosity,

* % % %
Re, =p_u L /u_ .

Time. 4

. . . % & *7
Nondimensional static temperature, T = 7T Cn/um .
Nondimensional Xq and X, velocity components,

k% *
u=u /um, v = v Reij/2

*
4
Transformed v velocity in the boundary-layer.
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Xq 1%y Nondimensional coordinates (surface or Cartesian), = .

X, = x;/L*, X, = Rei/2 x;/L* .

W Wavelength.

o ui/Te . -

8 Pressure gradient parameter, (Zg/ue)(due/da).

Y Ratio of specific heats, Cp/cv . '

Y Transverse intermittency function.

é Nondimensional displacement thickness.

6kinc Incompressible displacement thickness.

S Displacement body height.

€ Eddy viscosity.

e Eddy viscosity parameter, ¢ = 1 + % r .

e Eddy viscosity parameter, £ = 1 + % g%; T .

n Transformed normal variable.

8 Static temperature ratio, o = T/Te.

eS Surface inclination of the body.

8m Surface inclination of the displacement body.

£ Nondimensional momentum thickness. |

r Longitudinal intermittency function.

n Nondimensional viscosity, u = u*/u;{ujz/cg).

£ Transformed longitudinal wvariable. :

T, Functional grouping in inner region eddy viscosity mo&el._

T Nondimensional turbulent shear stress.

p Nondimensional density, p = p*/p: .

Subscripts

e Conditions evaluated on the displacement body or at tﬁe
outer edge of the boundary layer. :

f.p.’ Fl.at plate value.

.
L}

Trd



i Index for the longitudinal finite difference mesh.

W Conditions evaluated at the wall.
@ Conditions evaluated in the upstream freestream.
Superscripts

* Denotes dimensional quantities.
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INTRODUCTION

This research is concerned with the two-dimensional supersonic
flow of thick turbulent boundary layers over a train of relatively
small wave;like protuberances. Interest in this subject arises
from tﬁe need to predict the extent to which an initizlly flat
plate boundary layer has been disturbed by a regular corrugation
in the wall surface. The flow conditions and the geometry
considered here are such that there exists a strong interaction
between the viscous and inviscid flow. The problem cannot be
solved without including interaction effects because classical
boundary layer methods would terminate in a separation point
singularity.

To handle the present subject by boundarv-layer methods, a
technique-for treatment of the interacting boundary laver
equations as well as models for turbulence and for the viscous-—
inviscid interaction process must be available. A numerical
method for addressing closed bubble separation regions was
developed by Werle and Vatsa [l1]. It was applied to a number of
laminar separated flow problems including flow over a train of
sine-wave protuberances [2]. This method uses the interacting
boundary layver eguations with a éimé—like relaxation concept which
accounts for the boundary-value nature of the problem. This ‘
approach is adopted in the present study with the inclusion of
the eddy viscosity model of Cebeci and Smith into the solution
scheme. The present form of the numerical algorithm includes
several modifications to that of the earxlier work [2, 3] in order .
to accommodate the turbulent nature of the flow, the thick boun%é;y

layer, and the rather dramatic geometry variations of the wavy wall.



It wvas found that the method was capable of handling the
interacting turbulent flows of present interest. Solutions
were obtained for flow of thick turbulent boundary lavers over
“a train of waves. The results are presented in terms of surface
pressure, skin friction and heat transfer distributions. The
predicted trends are compared with available analytical results

based on small disturbance theory and with experimental data.



GOVERNING EQUATIONS

1. Boundary Layer Eguations in Physical Coordinates

The suitability of the interacting boundary layer eguations
for describing the relétively strong streamwise vériations in
the boundary layer characteristics due to sudden changes in the
body geometry has been, at least for the laminaxr case, verified
earlier [1, 2]. This approach is used in the present study in
which Prandtl's classical boundary layer eguations are adopted
with the only modification that the pressure variation was not
prescribed but calculated simultaneously from a viscous-inviscid
interaction model.

The boundary layer approximation in two-dimensional viscous
flow problems implies that the pressure variation is assumed to
occur only along one coordinate, taken in the general direction
of the wall shear layer. The degree of this approximation
depends on the choice of the coordinate system. While for very
thin boundary layers over a corrugated wall, or thick boundary
layers over a relatively flat wall, surface coordig%tes were
suitable, (see Ref. 3) for thick boundary layers flgwing over
a small amplitude wavy wall, Cartesian coordinates were found
to be more appropriate. Accordingly, the governing eguations
will first be written to apply to both the usual surface
coordinates (s*, nf) and the Cartesian coordinates (x*, y*)
using the notation (x;, x;) to denote either of these. Non-
dimensional variables of order one are now defined according

to the scheme

NAL
%%1%003 QUALITY



_ k= _ 1/2 % _=*
X = % /L, Xy = Re’" x,/L (1a)
* % * %* *
uw=u/u v o= Rei‘/2 v /uw ’ P = p*/pmu:2 :
* % % % % ’
p=e/og s T=CT /ul’ (1b)
. & * ES * *2 *

with Re_ = p_u L /u (u /Cp) {1le)

* * * * &
and u , v, p, p and T represent the mean velocities, pressure,

density and temperature respectively.

The turbulent boundary layer equations in these variables

ares

Continuity Equation

5% (W + 32— (bv) = 0 (2)

du

au su a ] au
ple g+ Vo) = oo u, = b o (2R o) (3)
X axz e e dxl axz ax2 T
Energy Egquation
du
3T aT 2 gu
plu ;e—+ v =) = - p 1 u + ( + 1)
axl ax2 e e dxl ax2 ax2
3 u aT
* 9%, (Pr X, T dp) . @)

where Tp and qp are the nondimensional turbulent stress and turbulent
heat flux respectively.
The gas is assumed to be air with constant specific heats and

constant Prandtl number, Pr = 0.72 with the perfect gas law,

f1=9



State Edquation

p = v=1 (5}
Y

Boundary Conditions

u(xl, xz) =0
v(xl, xz) = 0 at Xy = X, (xl)
W
T(xl,'xz) = TW(Xl)
and (6)
u{x,, x,) = u_{x,)
1l 2 e 71 at x, » o
T(xl, xz) = Te(xl)
where X, (Xl) describes the body surface contour (x2 = in
w W
surface coordinates, X, = yw(x) for Cartesian coordinates).
w

2. Turbulence Model

To obtain closure of the system of equations (2-6), models for
the turbulent stress and ?urbulent heat flux terms are needed. The
eddy viscosity concept uséd in conjunction with Prandtl's mixing
length hypothesis for thélwall layer region is the most widely
used algebraic model for turbulent stress. A well Xnown repre-
sentation is the two layer eddy viscosity model of Cebeci and Smith
which has been very successful in modeling turbulence effects for
?lat plate boundary layers and other attached boundary layers
with moderate pressure gradients. Less favorable results are

obtained when using this model for strongly interacting and separated

flow regions where it appears to fail conceptually.



In general turbulent quantities like the Reynolds stress
are governed by transport equations, thus requiring that the
turbulence history be accounted for. The eddy viscosity concept
relates the Reynolds stress to oﬁly the local mean flow gradient,
This corresponds to the physical idea that production of turbulence
at a point due to interaction with the ﬁean flow 1is cancelled by
the dissipation due tovits Se;f—interaction (this is referred
to as the "local quilibrium" concept). In other words, the
eddy viscosity model is the solution to a truncated transport
equation. In an effort to better align the predictions for
separated flows with experimental data, previous investigators
(see Refs. 4 and 5 for examples) have empirically modified the
equilibrium eddy viscosity model to account for the history effect.
Thus 'frozen', 'relaxation', and other models were devised and
successfully applied in several of separated flow predictions.
One of the present authorg [6] also used the 'frozen' and
'relaxation' models in the interacting boundary layer eguations
for separated flows with no significant improvements in the.
predicted results over those obtained with the basic eddy-viscosity
model. An alternate way to try to achieve more satisfactory results
would be to model the turbulence via the turbulent transport equa-
tions, and then eventually introduce modifications which will
account for the extra effects on turbulence occurring in the
strongly interacting flows. This will, of course, further tax
the computing times required for these calculations.

With the above mentioned limitations in mind, the basic form

of the Cebeci-Smith eddy viscosity model was adapted for the
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present study where interaction effects tend to reduce longitudinal
gradients and only small separation regions are encountered.

Thus we take

T = € (7a)
T sz
and relate dp to 1, by the turbulent Prandtl number as
_ au aT
PrT = (TT/EE—J/(QT/sg—) . (7b)
2 2
The turbulent Prandtl number is here taken constant, Pr_ = 0.90.

T
The two layer (outer and inner region) Cebeci-Smith model is then

given as:

Inner Region

* k2 *
= B su
(E/u)i = * (8a) -
u 8X2
- 5 * *
where L = Kl x2[l - exp(—xZ/A )] (8h)
with Kl = 0,40 and
* ~1/2
* * * * *
o= 260 /0 ) (ny, |2 /00 (8)

* *
where the absclute value of 3u /ax2 has been introduced in

equation (8c) as a modification of the Cebeci-Smith model for
reverse Iflows.

Outer Region

. -
(e/u)o = — K, v ¢ (9a)

.t
. e “ad

11 "‘



where y is the transverse intermittency function
Yy = {1 -~ erfls (x,/%, = 0.78)11/2 (9b)
e
The variable X, is the value of X, at which u/ue = 0.995, and

e
Gkinc is the incompressible displacement thickness.

3. Boundary Laver Eguations in Transformed Variables

The boundary layer egquations given in Section 1 are here
recast using the Levy-Lees transformation.

The new independent variables ares defined by

}‘1 u 72
g = o p.u_ dx, ,; n = p dx (l0a,b)
o ee Tl /ZT o 2

The normalized dependent variables are now defined as:
velocity ratio,
F = u/ue (11a)
mean static enthalpy ratio N
o ORIGINAL PAGE IS
6 = T/T_ OF POOR QUALITY (11b)

or, mean total enthalpy
g = H/He (llc)

With these definitions, egquations (2-4) become:

Continuity Eguation

2V 3F _

Momentum Ecuation

9F AF _ -p2y 3 8,7 3F ' -
25 F 35+ VA = gle-F?) + (i ) (132)
or
sF | 3P _ o 2 3 - JF
28 F 2c T Vv 3 (1 + 2) & (g-F7) + ——an(.‘ls ——-an) ‘ {13b)



static Teﬁperature Energy Eguation

2 -~
38 36 _ .= ,3F 3 € 38
2t P 3E + Vv T ale (an} + Ty (2 5T Eﬁ) (14a)

or
Total Temperature Energy Equation

>

89, ¢ 39 - 2e [T - : KERNE T TR - .

28R g+ Vg = 3xg e - e/PO)F 00 4 5o (5 50 4 (14b)
where & is the viscosity parameter defined by

% = pu/peue (15)

with u given from Sutherlan&'s viscosity law and the turbulent

parameters, ¢ and ¢ are defined as

e =1+ {e/p) T (16a)
e =1+ (e/u) §§ - (16b)
T

where T is the streamwise intermittency function: for fully laminar
£flow ' = ¢ and for‘fully turbulent flow r = 1, while for the
transitional region its value varies smoothly from zero to one.

The parameters ¢ and 8 are obtained from the local inviscid flow as

¢ = ui/Te (17a)
du
_ 2& e \
8 u_ dF (17b)

State Eguation

pe/p = 0 ' {18a)

or 0 /p = T3 (H - F°) (18b)
2
2



Boundary Conditions

F(Erﬂ) = 0

e(grﬂ) = TW/TE
or g(E;n) = HW/HE
where n, = 0 for surface coordinates and n, = nw(g) for Cartesian
coordinates. Also we have that

F(E;n) = 1

6(g,n}) = 1 . as n +* (19b)
or g(&,n) = 1

A
The turbulence relations given in Section 2 can be expressed
in transformed variables as:

Inner Region

2 2 2 2
pe ue Kl ﬁ
(e/w)., = ‘Re_ | (20a)
Al r r——-
u
=]
where Ty = 1 - exp(—ﬁz) {20b)
X, p. 1 T 1/2
v, = = -2 (ovRe, =Y |§§| j (20¢)
262 8°y Y2 E My
Outer Region
p_ U Y 6. .
(/) = === Re_ K, kgnc (204)
11e La
/IE Te
Sping = ot [ e(1-F) an (20e)
fRer peue o
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Note that, as far as the form of the governing equations is con-
cerned, the only difference between the use of surface coordinates
and Cartesian coordinates.is in the wall boundary condition
equation (19a). This can be eliminated using Prandtl's trans-

position theorem by writing that

E =z (21a)
no=n - (&) (21b)
- 1 -

V=V- 2 F (21c)

With these transformation equations (12-14) and (19) vield:

Continuity Eguation

AN HE S TR (22a)
an 9§

Momentum Egquation

22 F 2E 4+ § 3E = g(o-F?) + & (qf 2E (22b)
aE an an an
ox
2EF L+ T E = 1+ Y pig-rd) + Lz 25 (22¢)
3E an an an
Energy Equation
= _ 38 , = 38 - 3R % .3 1% 38
2F P -+ V22 = e (&) o+ (--;- <3 (22d)
& an an an an’ ’
or
28 7 29 4+ § 29 - gﬁ (2 (e-e/px)F 2E74 2_ (22 39y 5o,
3 3n on an an 4
Boundary Conditions
F{£,0) = ¥(E,0) = o0
8(¢,0) = ¢ (%) _
or g(€,9) = g (%) (23a)

1 vige (39T,

11



and

F(Er“) = 1

8(E,=) = 1
or gE,=) = 1 ' (23b)

The interacting boundary layer calculationé require an initial
velocity and temperature profile at some station ahead of the
effective interaction region (see Figure 1). This profile was
obtained here from a noninteracting two dimensional laminar-—
transitiocnal-turbulent boundary layer calculation by an ordinary

marching technique using a prescribed pressure distribution.

4, Inviscid/Viscouns Interaction Model

The interaction.of the boundary layer with the isentropic
supersonic inviscid flow is modeled in the pressure gradient
parameter B by coupling it to the inclination ST. The edge
pressure is obtained from the Prandtl-Mever relation approximated

here to second order in terms of §_ as

T
4
1 eT (Mi -2)2 + yM 5
Py = —= + + 5 83 (24)
YM '/M2_l 4(M°° "'1)
where o, = tan™t (a8 /dax) (25a)
8 = ]
bp = ¥, * §cos P ‘ {25b)
as = tan (dxz/dxl) (25¢)
S - ou
) Re j (1 = ) dx, (254)
X, e e
W
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Once P is obtained the isentropic relations and Fuler's eguation
are Used to cbtain B8 in equation (17b). Thus, the inviscid and
viscous flows must be solved simultaneously since they are
directly connected through the displacement thickness given in

equation (25c).

13



NUMERICAL METHOD OF SOLUTION

The numerical method used is an implicit finite difference
scheme written for the similarity form of the governing eguations
that marches from some initial station along the surface. to the
terminal point of interest. To account for the boundary value
nature of the problem, Werle and Vatsa [1] have added the time
dependent concept, similar to the one used for the solution of
elliptic partial differential equations. This results in
modification of only the momentum eguation (22b) by replacing
the pressure parameter 8 with g defined as

o4
§=e+~§-2. (26)

This method has been successfully applied to laminar separated

flow problems with various flow configurations including one with
multiple interacting regions [2, 3]. The extension of this

approach to turbulent boundaryv layers involves, aside from inclusion
of the eddy viscosity model into the solution scheme, a number

of modifications (see also Ref. 6). Specifically, the following
steps were taken.

1. The numerical stability and convergence rate has been
enhanced by introducing a new differencing in the continuity
equation. It has only recently been recognized [7, 8] that the
longitudinal defrivatives in the continuity equation pro¥vide a path
for interacting flows to propagate information upstream. To
accommoda?e this numerically requires the use of some sort of a

forward difference procedure. In the present work we .adopt in

the continuity equation the following forward differencing

14



(o)
i+l
AL

-.Fi

where the superscript (o) denotes values at the previous time step
and subscript i rafers to the ith,station along the length of the
surface.

2. The reliability of the present algorithm was enhanced
by adopting the 'upwind differencing’ concept for the longitudinal
convection effects. In the reversed flow region upwind differencing
was used in the longitudinal éirection for the convective terms
in order to satisfy the stability requirements. This eliminates
the so-called 'artificial convection' concept used earlier [2]
for the laminar case. This modification is significant because
the velocities in the reversed flow regions are Iarge% in the
turbulent case than in the laminar. Thus the convection term in

the momentum equation is differenced as

3Fy _ 1 .o % _ .
Fy (7‘"5)1 =5 (Fy + |F |} (F; - P, _j)/08 +
L1 .: ~ (o}
Py {F - [Fil}(Fi+l - F.)/88 . (27)

(o}

i

éi is replaced by Fi—l for forward flow, and by-F for reversed
flow. By replacing the ﬁi with Féo) the occurrence of a separation
point singularity is avoided [1, 6]. Note that the first term

on the right hand side of equation (27) vanishes for reversed

" flow, and the second term vanishes for the forward flow. The

same procedure was followed with the term F36/3f in the energy

egquation.



Furthermore, the upwind differencing was found also helpful
in the n direction, in the convective dominated outer regions of
the thick turbulent boundary layer. It was brought to our
attention* that upwind differencing of the 3F/5n term in the
momentum equation might be reguired to satisfy the convergence
criteria of the numerical scheme (see also Ref. 9). In the
boundary layer near the wall the diffusion term Fon dominates the
convective-like term Fn and a central difference scheme for Fﬁ
is appropriate. However, in the outer reaches of the boundary
layer the diffusion term decreases significantly and numerical
instabilities occur. From a study of the model y
equation an + aFn =0 it is found that with central differencing
the criteria [« An| < 2 must be adhered to, to avoid these
oscillations. Hence the term F was central differenced when
| an]| < 1 and upwind differenced when |o an| > 1.

3. The convergence rate of the time relaxation solution
method for the thick boundary layers has been found much slower
than for thin boundary layers. The two cases differ largely in
that for the thick boundary layer the disturbance of the total
displacement body from the flat plate value is very small. It
was argued that the numerical truncation error can be of the same
order as this relative change per one iteration, thus leading %o
very small convergence réte. We introduced therefore a new
variable D, in place of the total displacement body 8o The. D

T

is defined as DT‘E [6T(g,t) - si(gi)]/hs, where Gi(Ei) is the

displacement thickness at the initial station and hs is a constant

T

* R.T. Davis, Personal Communication.
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of the order of the maximum protuberance height. Calculations
performed with this modification show improvement in the
convergence rate.

The accuracy of the calculated solutions depends on the degree
of precision of the finite-difference approximation and the step
size. In turbulent boundary layers, large changes occur in the
velocity profile in the inner layer very near the surface. A
sufficient number of mesh points are nesded near the wall in order
to get a good resclution in the predictions of wall shear and
surface heat transfer. At the outer edge of the boundary layer
where the Levy-Lees variable n acquires large values, the changes
are, on the other hand, very small. This is especially pertinent
in the case of a thick turbulent boundary layer disturbed by a
relatively small protuberance. Thus, for reasons of efficiency
and accuracy a variable mesh size in the n direction is used in
solving most turbulent boundary layers. A mesh growing in size
from the wall as a,geometric progression is used in the present
algorithm. Blottner [1Q] has shown that in terms of a transfofmed
normal variable N({n) replacing the stretched Levy-Iees varizble 7,
the truncation error is proporticnal to AN2 as N - 0, or the
- method of calculation is second order accurate. At the jth grid.
point the physical coordinate is obtained from
Nj/ANO

n. = n. (K
J Imax

l/ANO

- /(K - 1) . (28)

where K = Anj/anj_l, Nj = (j-1)aN, {3

is the constant step in the transformed plane. The second order

max*l)AN = 1, and where AN

accuracy is achieved by varying j and holding ANO fixed [10].

max
Ty

i7 i
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It was found here that if inst=zad one replaced ANO by AN, where AN
is of course varying with jmax’ while holding XK fixed the error
diminishes with AN as Kfl/AN, i.e. much faster than AN®. Further
details are given in Appendix A. Figures 2 show the surface heating
parameter's dependence on AN and thus provides an accurate error
estimation procedure. éased on this step size study it was found
that with values of Mmax = 200, jmax = 55, and K = 1.254, a 7%
truncation error was incurred in the calculation of wall heat
transfer. This represents an acceptable compromise between the
accuracy and the efficiency of calculations.

The governing equations were linearizéd and the partial
derivatives were replaced by finite differences. The eddy viscosity
term ¢/u, appearing as a nonlinear term in the governing eguations,
is approximated by its prévious station value. Central differences
were used to represent partials with respect to n (except as
noted above where upwind differencing for Fn was required in the
outer region of the boundary layer) as well as for the streamwise
derivatives of the displacement body height, 0me Upwind differencing
was used in thé convective terms in the momentum and energy
equations and forward differencing with respect to £ in the
continuity eguation.

The calculation commences with certain initial conditions and
then through the time dependent approach [1] the steady state
solution for a given set of boundary conditions is: sought. In
the present calculations the initial conditions were set by taking
the zero time displacement body to correspond to a flat plate

boundary layer and the surface protuberance to be of zero height.

Subseguent time sweeps are conducted with the wave amplitude

18



increasing gradually by a small amount. 2After the desired geometry
is reached {(after the first 10-15 sweeps) the time-like relaxation
process is continued until the flow properties are relaxed to

the final value. This process is shown in Figure 3a where

the skin friction coeffiﬁient at one location (s = 3.58) is shown
as a function of time iteration number. This location is near

the junction of the flat plate with a single sine-wave protuberance
where separation occurs. The resulting skin friction and

surface heating distributions are shown in Figure 3b. For this
case with a thin boundary layer, the calculation was performed

in surface coordinates. Figure 3a shows that once the full
protuberance height is attained (1l sweeps) it takes about 50

more sweeps for the skin friction to attain its 'steady state’
value, This calculation, with 41 normal grid points and 71
longitudinal grid points were‘performed in 5 minutesg of

computer time on the IBM 370-168.
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RESULTS AND DISCUSSION

A major interest of the present investigation is in the
numerical predictions for thick turbulent boundary lavers over
a wavy wall, as those in the experiments of reference [11].

The geometry and the flow conditions were therefore chosen to
coincide with those given in reference [11]. The amplitude
and wave length are a* = 0.29 c¢m, w* = 3.66 cm respecti%ely.
A reference length L* = 15.25 cm was chosen. The base flow
conditions are defined by M_ = 2.53, Re_ = 10.82 x lOG/m,

T, = 174°K and TW/TO = 0.81. Henceforth, we refer to the;e
conditions as standard flow conditions.

To obtain the present resulits it is £first necessary to
generate initial profiles at some point ahead of the first
protuberance—~£flat plate juncture. For the standaxd flow condi-~
tions this station was taken at x = 72.90, where the initial
profiles were obtained from a noninteracting calculation to
correspond to the houndary layver as it develops along the wall
of the UPWT Langley Wind Tunnel {11]. The deta$ls concerning
the calculation of the initial profiles are described in
Appendix B. The interacting algorithm was suhseguently emploved
between this initial station and a downstream station past the
last protuberance. The problem was first formulated and solved
in the customary surface coordinates. It turned out that the
geometry extremes make the use of the Cartesian coordinates
version of the boundary layer equations more reasocnable. The
results of the calculations shown here were performed with a
longitudinal stepsize Ax = 0.02, and a 55 point grid across the

boundary layer.
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Examples from the calculated results are presented for flow
over & train of up to six waves, for Mach numbers M = 2.5 and
3.5, for Reynolds numbers Re_ = 10.82 x 106/m and 32.46 x 106/m
and for wall to total temperature ratios TW/TO = (.40 and 0.81.

Figure 4 shows the contour of a train of six waves, the
displacement body and the viscous and inviscid pressure distri-
butions for the standard flow conditions. The difference in the
inviscid and viscous pressures dramatically shows the effect and
need for interaétion. The pressure is calculated from an
approximation to the Prandtl-Meyver relation, accurate to second
order in flow inclination angle. The inviscid pressure is
calculated using the local body slope, whereas the viscous
pressure is obtained by using the slope of the displacement
body (= bp = ¥, + §). The difference in the viscous and inviscid
pressure i1s due to the difference in amplitudes of the actual (v,)
and displacement (GT) body. It is inteiesting to Observe that the
viscous pressure is almost periodic even though the average
displacement thickness decreases. Figure 5 shows with the
distribution of pressure the corresponding distribution of
surface heat transfer and skin friction at the same base flow
conditions. The pressure peaks and peaks in heating occur at
about the same location shead of the body surféﬁe peak. The
peak in skin friction is shifted in the opposite direction.

While the pressure distribution is nearly periodic, the heating
;evgkﬁﬂand the skin friction peaks rise in the downstream
diégg;ion. The rate of rise in pezk heating is decreasing very

slowly. These results are in contradistinction to our similar
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study {3] of thin laminar flow over a train of sine~waves, where
the peaks in heatiﬁg decréase& rapidly in the streamwise direction.
Figure 6 points out the fact that the local value of the surface
parameters is almost unaffected by the presence of additional
downstream disturbance for turbulent boundary layers (compare
also Figures 5 and 6). Simply, downstream waves have little
upstream influence and the problem.seems localized. Heating
levels aft of waves grow as the number of waves increzses, but
the downstream skin friction is unaffected by the number of waves.

To demonsfrate the effect on surface properties due‘to Mach
number, wall temperature, and Reynolds number, three additional
cases are shown in Figures 7A,B through 92,B. The increase of
Mach number (Figures 72,B} from 2.5 to 3.5 causes a decrease

in the ratio of hmax/h As in the standard flow case,

f.p.’
the  location which the first wave was placed was chosen in such
a way that the flat plate boundary layer displacement

thickness was about the same as in the experimental study of
reference [11].
The lowering of wall temperature to Tw/To = 0.40 (Figures 82,B)

shows a similar trend in h

F inc in Mach
max/hf.p. as rpr the increase Ma

number. 3ut the absolute rate of surface heating is much higher
than in the previous case. Interestingly, the h/hf curve is

smoother here than in other cases.

Lastly, an increase in Reynolds number, shown in Figures 9Aa,B

is seen to cause a slight increase in tha -ratio of peak heating.

ORIGINAT, paq
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An interesting aspect of the present results is the location
of the peaks in pressure, heat transfer and shear. The present
predictions show tﬁe peaks in pressure and heating to occur at
about the same location. This is in agreement with experimental
observations [11]. The location of the peak pressure in the
present results is shifted to the right of the location of the
inviscid peak pressure location {(at v = 0} by a phase angle of
about 60°. Theoretical studies by Inger and Williams [12] and
by Lekoudis et al. [13] predict such a shift. Data from these
studies given up to M_ = 2.0 show a shift to the left which drops
off quickly towards zero at M_ = 2. It is therefore possible
to expect a phase angle in the opposite sense for M_ > 2, as is
the case in present résults. The maximuﬁ wall shear location
obtained from present calculations is shifted to the right of the
peaks in pressure and surface heating by about 60°. According
to theoretical predictions [13] qualitatively such a shift is
expected. Experimental data available at the same flow conditions
[11] show a periodic trend in surface pressure as well as in
the surface heating distributioni The periodic trend in surface
preésure is observed also in the present prédictions.

Pressure and heating distributions between the second and
third peak are compared to the experimegtai data [11l], for Mach
numbers 2.5 and 3.5 in Figure 7B. While the heating dis-
tributions in the experiments of reference [11] are nearly
repetidtive over consecutive waves,-the present predictions

show a continuous increase over the length of the waves. MNote
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though that in the exggrimental study there is also indication
that seéaration océurs, while a lack of separation is ohserved
in the analytical results of Figure 5. The cause of this
disagreeﬁent is not certain but it could well be dus to our
cheoice of turbulence model or in the fact that the present
calculations do not simulate well enough zll the test condifions
(three-dimensional effects or boundary layer development on the
tunnel wall). Note the calculated boundary layer displacement
thickness of the initial profile at station x = 72.90 is

2.86 cm, close to the value given in reference [11]. However
the predicted surface heating value at this station is too high
when compared to experimental data of reference [11] (The

predicted value is h = 96.5 watts/m2 °K vs 62.5 Watts/m2 °K

f.p.
in experiments)., Other prediction methods also typically over
predict to about the same level the heat transfer rates for
boundary layers developing along the wind tunnel walls [14]

thus indicating that some £inal adjustments may be neeéed in

the turbulence model for these flows.

While the present prediction method has in a certain way
accounted for the boundary layer displacement effect by using
the interacting bound;ry layer equations, the effect of surface
curvature was neglected. The curvature effect in turbulent
flows has heen summarized in a comprehensive monograph by
Bradshaw [15]. It has been found £hat even in cases when the
longitudinal surface curvature is accopnted for .in the governing
equations the predicted surface aerodynamic parameters (surface
heating, wall shear) still deviate considerably from the

experimental data. Apparently, the streamline curvature has an
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effect on the turbulence structure not included in the existing
turbulence models. Bradshaw therefore proposed a simple
correlation scheme applicable to turbulent flows with not too
large streamline curvature. For the simplest equilibrium model
used in thé present work this correction consists of multiplying
the mixing length by a factor £ = 1 +ee/(3u/dy), where e = 3v/ax
is the extra rate of strain induced by the streamline curvature
(and-au/ay is the mean rate of strain). This correction is
recommended for only 0.5 $ £ £ 1.5. The constant o is of

order 1l0. Because of the time lag between the first appearance
of the curvature and its full effect on turbulence the effective

value of ce is calculated from the lag equation

d - -
108 = (cze)eff = a.e (ae)eff {29)

where § is the boundary-layer thickness, and the constant ¢ is
taken to be 10. This idea has been implemented here for the
standard test case by evaluating 3v/3x along a streamline at
each station x. It was then assumed that this is a representative
value for all values of y at this station. The § was taken to
correspond to station x = 73.20. The case with base flow
conditions’ was recalculated. it was found that a streamline
had to be chosen‘in the lower part of the inner laver {passing
the 21st grid peoint at x = 73.20} in order not to violate the
condition 0.5 I £ £ 1.5. The results of this calculation are
showh in Figures 10A,B. Observe that the peaks in h/hf.p. and
Cf are now lower and slightly dropping along the wall. 2

comparison between the detailed distribution of the surface
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heating calculated with and without the curvature correction,
and against the experimental data is shown in Figure 10b. The
comparison with experiments is now more favorable on the
compressicn side of the wave. Recall however that in the wind
tunnel tests the boundary layer was separated.

To examine the effect of separation on the character of
the heating distribution and alsc to demonstrate the capability
of the method to solve multiple separation regions, calculations
without curvature correction were performed with the base
flow conditions but for a boundary layer developed along a flat
'plate up to the junction point x = 24,30 (Figures 11A,B).

It is noticed (Fig. 11B) that when compared to the unseparated
case, the heating values are lowexr on the expansion side of

the wave. Flow separation occurred in this case due to the
different history and also because of the larger pressure
gradients: the ratio §/a is here smaller than for the standard
case and therefore the slope of the total ‘displacement body
steeper. This is even more apparent for a relatively very thin
boundary layer. Figure 12 shows the results from a calculation
performed at the same flow condition as in Figure 11, except
that junction of the flat plate and the firsi protuberance

was moved forward to x = 3.3 and the wave height was reduced to
one-half of the previous value. Larger pressuré gradients and
separation regions now appear closer to the center of the
valleys are observed. Again, the peak heating rates grow in

the streamwise direction.
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In reference [1l] it was found that unlike for thin boundary
layers, the peak heating rates were insensitive to the wave
amplitude. To examine this gquestion a set of calculations
were performed for different ratios of wave amplitude to wave
length, a/w. According to the present predictions the heating
rates change considerably with the amplitude even for the
thick boundary layers (Figs. 13A,B). For both thick and thin
boundary layers the peak heating values, (h/hf-P.)max’ are
plotted in Figure 14, The present predictions show similar
behavior for both thin and thick boundary layers: a stronger
than linear increase in peak heating with the increase of
wave amplitude. Note that the curvature effect on turbulence
was not accounted for in the results shown in Figures 13
and 14. The larger curvatures corresponding to hicher amplitude
waves probably amplify the predicted trend observed in

Figures 13 and 14.
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CONCLUSIONS

A numerical method capable of handling multiple interacting
flow regions was adapted to the problem of thick turbulent
boundary layer over a wavy wall.

The results of calculations presented in terms of surface
pressure, skin friction, and heat éransfer distributions disclose
features distinctly different from the laminar case. The
present results show a shift in the location of the viscous
pressure peaks relative to the peaks in the inviscid pressure
and to the peaks in the wall shear. These phase shifts are
in gualitative agreement with theoretical predictions based
on small disturbance theory. - The location of peaks in viscous
Pressure and heat transfer coincide, and the longitudinal
pressure variation is periodic. This is in agreement with the
experimental data. The experiments also show periodicity in
surface heating distribucion, while the present results predict
a continuous increase in heating indicating a possible weakness
in the turbulence model for a surface with rapidly varying
curvature. A semi-empirical modification of the eddy viscosity
model, intended to account for the longitudinal ecurvature
effect, aligns the predictions closer to the experimental data.
It is recommended that future work be carried out with a more
accurate-turbulence model, and that a more optimal coordinate

system be adopted for this problem.
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APPENDIX A

GRID SIZE EFFECT ON ACCURACY

The objective is to assess the accuracy of the predicted
surface boundary layer characteristics from the standpoint of the
normal mesh size. The very thick turbulent boundary layer as
produced on the wall of the UPWT Langley tunnel is of interest
here. The boundary laver calculation is carried out as an
non-interacting 2~D laminar-transitional-turbulent bcundary
layer. The corresponding pressure gradient is calculated from
the Mach number distribution given in Appendix B.

The free stream conditions in the test section are: M_ =
2.535, Re,/cm = 1.08 x 10°, T_ = 314°R, T _/T_ = 0.8l and p,_ =
199 psf. BAnd Pr = 0.72, Prp, = 0.9 were taken. The calculation
commences at s = 0.3 with a laminar boundary layer, which
becomes fully turbulent at s = 2.1 {(As = 0.1). The Mach number
becomes constant at s = 40.60. The implicit finite-difference
method (Flugge-Lotz~Blottner-Davis) with non-uniform grid size,
varying according to a geometric progression law, is employed.

The truncation error in this type of calculation is
proportional to the guantity (nj+l - znj + “j-l) E Anj - A”j—l’
and therefore in general not second order accurate. Blottner
has shown [10] that in terms of a transformed variable, N = N(n),
where the coordinate N is obtained by coordinate stretching
such that AN is uniform, the error is of order AN2. Blottner
substantiates his conclusion by a set of calcﬁlations using tﬂei
transformation

N‘/ANd l/ANO

n.=nJ(K3 - 1)/(K - 1) ,



where j =1, 2, ..., J = jmax = number of grid points,

Nj = (j=1)/(dJ-1), K = Anj/Anj_l, and ANO = constant.
A similar type of transformation, corresponding to the
geometrical variation of Anj is also employed here:

N./AN 1/a8

ng = nzE Y -1/ ~ 1)

where AN = 1/(J-1) and K = KO = 1.12) does not vary with J.

Since the local truncation error is

2
= - _ & m 2 L4
Ej = nj+1 an + “j—l = (3N2) ANT + 0(AN)
N./AN
2 2 g 1 2 3
and PN = i o W 1R K, ‘
K -1
o
we get
2 Nj/AN 1/AN
Ej ~ (ano) K nmax/(Ko -1y .

At a fixed grid location j (ﬁj/AN = j-l), and for a large 1/AN
the error should be therefore plotted versus ¥ /N,

A set of calculations was carried out with J = 80, 85, 90,
9%, 100, 125 and 150 for Ko = 1.12 and two values of g

(n = 352 and 200). For the station s = 54.0 (a location on

J
the straight section of the tunnel wall) the wall heat

transier parameter gag/an)w is shown in Figure 2. -

As the error term suggests, the error decreases with decreasin

©f a___, and plots linearly with x 1/4N

max as AN - 0. It is also

observed that the two point formula [10] (used in conjunction with
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the governing equations evaluated at the wall) for evaluating

(ag/an)w gives better results, especially at the eXcessive value

of Mmax®

In a second set of calculations the value of K was varied

together with J in a specified way:

— m - T — —
K = KO ; {(F-1)m Jo 1 .

Here KO = 1,12, m = positive integer, JO = 109, ng = 200. We

take m =1, 2, 3 or 4, so that J = 109, 55, 37 or 28.
" Then,
mN_ /AN m/AN
ny = ng(Kg - - /&, -1,
AN = 1/(J-1) = m/(Jo—l) = mAN
(F -1)N, 1/AN
= o i _ o _
ny nJ(K0 /&, 1y .

Thus the transformation is independent of AN and the error
term, as in reference [10], is now proportional to ANZ. This
is exhibited in Fig. 2B where the variation of the surface heat
transfer parameter at station s = 54.0 is plotted for values
J = 109, 55, 37 and 28 {(compare with Figure 2a). These calculations
were performed by first setting KO = 1.12 and J =_Jo.= 109
for 0.3 < s < 44.3., At s = 44.3, every 2nd, 3rd or 4th grid
point value &as used (corresponding tom = 2, 3 or 4) and the
calculation marched (with the new value 3 = 55, 37 or 28.and
m, )

K = KO past station 44.3.
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In summary, Blotiner's interpretation of the acéutacy of
the variable grid sige was extended by showing that the error
term of the numerical scheme varies linearly with the
inverse square of the number of grid spacings, {(J~1), when K
and J are varying in a specified way, but alsc plots linearly

with the inverse exponential of (J-1) when K is fixed.



APPENDIX B

INTTIAL PROFILES FOR THICK BOUNDA@Y LAYERS

A major aim of the present research project was to align
numerical predictions for flow of thick turbulent boundarv-layers
over a wavy wall with the experimental program of reference [11j.
For this reason a set of calculations were first performed for
the boundary layer as it develops along the wall of the UPWT
Langley Tunnel. The boundary-layer calculation was carried out
as a non—-interacting two-dimensional laminar-transitional-~
turbulent boundary-layer developing from ahead of the nozzle
throat under a favorable pressure gradient. In the supersonic
region downstream of the throat the pressure distribution was
calculated from the sidewall Mach number distributicon, using
isentropic relations. The Mach number distribution was obtained
from a characteristics net. From these data a cubic
representation for M was assumed of the form
(1-5—)2 1 -, =)

s "2 s d

2

M= m
T T

1

where MT = test section Mach number at s = ST' The above

pclynomial representation satisfies the condition dM/ds = 0

at s = Sep- 2t the location s, of the first characteristic near

the throat the Mach number was estimated to be Mu = 1.11. The

measured distance along the wall from s, to S is 39.6 (-~ 20 ft).

At a location 56,8.86 units downstream of sa,the Mach number

is MB = 1.84., Letting s, = 1, Sg = 9.86 and s, = 40.6. Using



these values, the constants Kl and K2 can he determined. For
Ko Kz > 0 and XK, =1 {(which is the case here} the polynomial
representation given anve yields monotomically increasing

Mach number. The subsonic-transonic section of the tunnel