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SUMMARY
 

This research is concerned with the development of a pre­

diction method for calculating detailed distributions of surface
 

heating rates, pressure and skin friction over a wavy wall in
 

a two-dimensional supersonic flow. Of particular interest is
 

the flow of thick turbulent boundary layers. The surface
 

geometry and the flow conditions considered are such that there
 

exists a strong interaction between the viscous and inviscid
 

flow. First, using the interacting turbulent-boundary layer
 

equations, the problem is formulated in physical coordinates
 

and then a reformulation of the governing equations in terms of
 

Levy-Lees variables is given. Next, a numerical scheme for
 

solving interacting boundary layer equations is adapted. A
 

number of modifications which led to the improvement of the
 

numerical algorithm are discussed. Finally, results are presented
 

for flow over a train of up to six waves at various flow
 

conditions. Limited comparisons with independent experimental
 

and analytical results are also given.
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NOMENCLATURE
 

Aumplitude.
 

Eddy viscosity damping function.
 

* * *2

Skin friction coefficient, -rw/p u /2.
 

Constant pressure specific heat.
 

Normalized longitudinal velocity, F = u/ue
 

Normalized total enthalpy, g = H/He
 

Heat transfer coefficient.
 

Nondimensional total enthalpy, H = H*/u 2 .
 

Constants in eddy viscosity models.
 

Viscosity parameter, Z=pu/Pee
 

length.
 

Reference length.
 

Mach number.
 

S, *2
Nondimensional static pressure, p = p /p. u
 

Prandt! number.
 

Turbulent Prandtl number.
 

Nondimensional turbulent heat flux rate.
 

Reynolds number based on reference viscosity,
 

Re. = Re p/r(U.* * *2/Cp *
 

Reynolds number based on free stream viscosity,
 

Re = p. u L /p
 

Time.
 

Nondimensional static temperature, T = T C*/u
 .
 

Nondimensional xI and x2 velocity components,
 
* ** 

u = u /u, v = v Re /u.
 

Transformed v velocity in the boundary-layer.
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x1,x 2 	 Nondimensional coordinates (surface or Cartesian),
 
* , el/2 * ,
 

x1 = Xl/L, x2 =Re x2/L
 

w 	 Wavelength.
 

a 	 u2/T
e e 

Pressure gradient parameter, (2/ue) (due/dC). 

Y Ratio of specific heats, Cp/Cv 

y Transverse intermittency function. 

d Nondimensional displacement thickness. 

6kinc Incompressible displacement thickness. 

6T Displacement body height. 

e Eddy viscosity. 

EEddy viscosity parameter, E = 1 + £ r 
Pr


Eddy viscosity parameter, = 1 + £ Pr
 
PrT 

Transformed normal variable. 

a Static temperature ratio, 8 = T/Te .
 
SS Surface inclination of the body.e
 

aT 	 Surface inclination of the displacement body.
 

z Nondimensional momentum thickness. 

r Longitudinal intermittency function. 

p Nondimensional viscosity, p = p /1(Ur /Cp). 
rp 

Transformed longitudinal variable. 

i,"2 Functional grouping in inner region eddy viscosity model. 

TT Nondimensional turbulent shear stress. 

p Nondimensional density, p = p /p. 

Subscripts
 

e 	 Conditions evaluated on the displacement body or at the
 

outer edge of the boundary layer.
 

f~p.' 	 Flat plate value.
 



i Index for the longitudinal finite difference mesh.
 

w Conditions evaluated at the wall.
 

Conditions evaluated in the upstream freestream.
 

Superscripts
 

* Denotes dimensional quantities. 
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INTRODUCTION
 

This research is concerned with the two-dimensional supersonic
 

flow of thick turbulent boundary layers over a train of relatively
 

small wave-like protuberances. Interest in this subject arises
 

from the need to predict the extent to which an initially flat
 

plate boundary layer has been disturbed by a regular corrugation
 

in the wall surface. The flow conditions and the geometry
 

considered here are such that there exists a strong interaction
 

between the viscous and inviscid flow. The problem cannot be
 

solved without including interaction effects because classical
 

boundary layer methods would terminate in a separation point
 

singularity.
 

To handle the present subject by boundary-layer methods, a
 

technique for treatment of the interacting boundary layer
 

equations as well as models for turbulence and for the viscous­

inviscid interaction process must be available. 
A numerical
 

method for addressing closed bubble separation regions was
 

developed by Werle and Vatsa [1]. it was applied to a number of
 

laminar separated flow problems including flow over a train of
 

sine-wave protuberances [2]. This method uses the interacting
 

boundary layer equations with a time-like relaxation concept which
 

accounts for the boundary-value nature of the problem. This
 

approach is adopted in the present study with the inclusion of
 

the eddy viscosity model of Cebeci and Smith into the solution
 

scheme. The present form of the numerical algorithm includes
 

several modifications to that of the earlier work 
[2, 3] in order
 

to accommodate the turbulent nature of the flow, the thick boundary
 

layer, and the rather dramatic geometry variations of the wavy wall.
 



It was 
found that the method was capable of handling the
 

interacting turbulent flows of present interest. 
Solutions
 

were 
obtained for flow of thick turbulent boundary layers over
 

a train of waves. The results are presented in terms of surface
 

pressure, skin friction and heat transfer distributions. The
 

predicted trends are compared with available analytical results
 

based on small disturbance theory and with experimental data.
 



GOVERNING EQUATIONS
 

1. Boundary Layer Equations in Physical Coordinates
 

The suitability of the interacting boundary layer equations 

for describing the relatively strong streamwise variations in 

the boundary layer characteristics due to sudden changes in the 

body geometry has been, at least for the laminar case, verified 

earlier [1, 21. This approach is used in the present study in 

which Prandtl's classical boundary layer equations are adopted 

with the only modification that the pressure variation was not 

prescribed but calculated simultaneously from a viscous-inviscid 

interaction model. 

The boundary layer approximation in two-dimensional viscous
 

flow problems implies that the pressure variation is assumed to
 

occur only along one coordinate, taken in the general direction
 

of the wall shear layer. The degree of this approximation
 

depends on the choice of the coordinate system. While for very
 

thin boundary layers over a corrugated wall, or thick boundary
 

layers over a relatively flat wall, surface coordinates were
 

suitable, (see Ref. 3) for thick boundary layers flowing over
 

a small amplitude wavy wall, Cartesian coordinates were found
 

to be more appropriate. Accordingly, the governing equations
 

will first be written to apply to both the usual surface
 

coordinates (s*, n ) and the Cartesian coordinates x y) 

using the notation (xll 2 ) to denote either of these. Non­

dimensional variables of order one are now defined according
 

to the scheme
 

OU1GIAI, PA'GE IS 
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* * el2* . 
x 
=x /L x2 Re1/ x2/L 
 (la) 

/UL 2= er 2u , p= p* 

* * /12* *1 uuu v /u , p p, Re'V /p~uw 

p p /p , T = CpT /u (ib) 

with Rer p. * u * L * /1 * ( *2 /Cp) * 
(1c)
 

* 
 * * * * 

and u , ,, v p p and T represent the mean velocities, pressure,
 

density and temperature respectively.
 

The turbulent boundary layer equations in these variables
 

are: 

Continuity Equation
 

a-- (pu) + a-- (pv) = 0 (2)
 

j.x ax2
 

Momentum Equation 

p(u u + V u due a aux ax2 dx1 3x 2 (t ax2 + TT) (3) 

Energy Equation
 

(u IT - U e au +aua1 ax2 e e x . X2 ax2 T
 

+ 3 P ax 2 + (4) 

where cT and qT are the nondimensional turbulent stress and turbulent 

heat flux respectively. 

The gas is assumed to be air with constant specific heats and
 

constant Prandtl number, Pr 
= 0.72 with the perfect gas law,
 

A 



State Ecuation
 

= 1 T (5)
Y 

Boundary Conditions 

u(xI, x2 ) = 0
 

v(x ! , x2 ) = 0 at xI = (X1 )x 2 
w
 

T(x 1 , x2 ) = Tw (x )
 

and 
 (6) 
u(x I , x2) = Ue(X I ) at 

T(xI, x2) = Te(X1 )
 

where x2 (x1) describes the body surface contour (x2 = 0 in 
w w
 

surface coordinates, x2 = yW(x) for Cartesian coordinates).
 
w
 

2. Turbulence Model
 

To obtain closure of the system of equations (2-6), models for
 

the turbulent stress and turbulent heat flux terms are needed. The
 

eddy viscosity concept used in conjunction with Prandtl's mixing
 

length hypothesis for th \wall layer region is the most widely
 

used algebraic model for turbulent stress. A well known repre­

sentation is the two layer eddy viscosity model of Cebeci and Smith
 

which has been very successful in modeling turbulence effects for
 

flat plate boundary layers and other attached boundary layers
 

with moderate pressure gradients. Less favorable results are
 

obtained when using this model for strongly interacting and separated
 

flow regions where it appears to fail conceptually.
 



In general turbulent quantities like the Reynolds stress
 

are governed by transport equations, thus requiring that the
 

turbulence history be accounted for. The eddy viscosity concept
 

relates the Reynolds stress to only the local mean flow gradient.
 

This corresponds to the physical idea that production of turbulence 

at a point due to interaction with the mean flow is cancelled by
 

the dissipation due to its self-interaction (this is referred
 

to as the "local equilibrium" concept). in other words, the
 

eddy viscosity model is the solution to a truncated transport
 

equation. In an effort to better align the predictions for
 

separated flows with experimental data, previous investigators
 

(see Refs. 4 and 5 for examples) have empirically modified the
 

equilibrium eddy viscosity model to account for the history effect.
 

Thus 'frozen', 'relaxation', and other models were devised and
 

successfully applied in several of separated flow predictions.
 

One of the present authors [6] also used the 'frozen' and
 

'relaxation' models in the interacting boundary layer equations
 

for separated flows with no significant improvements in the
 

predicted results over those obtained with the basic eddy-viscosity
 

model. An alternate way to try to achieve more satisfactory results
 

would be to model the turbulence via the turbulent transport equa­

tions, and then eventually introduce modifications which will
 

account for the extra effects on turbulence occurring in the
 

strongly interacting flows. This will, of course, further tax
 

the computing times required for these calculations.
 

With the above mentioned limitations in mind, the basic form
 

of the Cebeci-Smith eddy viscosity model was adapted for the
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present study where interaction effects tend to reduce longitudinal
 

gradients and only small separation regions are encountered.
 

Thus we take
 

TT Du 
 (7a)

T2
 

and relate qT to tT by the turbulent Prandtl number as
 

Pq//au)/(q 23 
 (7b ) 
2 2) 

The turbulent Prandtl number is here taken constant, PrT = 0.90. 

The two layer (outer and inner region) Cebeci-Smith model is then
 

given as:
 

Inner Region
 

u (8a) 

where £ = 1 x 2 [1 - exp(-x 2 /A)] (8b) 

with K1 = 0.40 and 

* *1/2
A = 26 (p /p )(p w /P) (8c)3x2 w
 

where the absolute value of au /ax2 has been introduced in
 

equation (8c) as a modification of the Cebeci-Smith model for
 

reverse flows. 

Outer Region 

() = p * ue 1(2 Y -6 kinc (9a) 



where y is the transverse intermittency function 

y = {i - erf[5(x 2/x2 - 0.78).])/2 (9b) 
e 

The 	variable x2 is the value of x2 =at which u/u 0.995, and
 
e 

6kinc is the incompressible displacement thickness.
 

3. 	 Boundary Laver Equations in Transformed Variables 

The boundary layer equations given in Section 1 are here 

recast using the Levy-Lees transformation.
 

The new independent variables are defined by
 

x 1u 
 x2
 

f Pe pleUe dx1 , = e f p dx 2 (!0a,b)
o 27 o 

The normalized dependent variables are now defined as:
 

velocity ratio,
 

F = u/ue (11a)
 

mean static enthalpy ratio
 ORIGINAL PAGE IS 
6 = T/Te OF POOR QUALITY (llb) 

or, mean total enthalpy 

g = H/He (l1c)
 

With these definitions, equations (2-4) become:
 

Continuity Equation
 

=2V + 	 2 - + F 0 (12) 

Momentum Ecuation
 

F 1
2E 2r 	 + V - - = B(8-F2)-F + 7 (13a) 
an	 (1 

or 

2g F ­ + V = (1 + ') C(g-F 2 ) + 	 (13b) 

8
 



Static Temperature Energy Equation
 

2 g F 21 + V = (I )2 + ( ! a
r 

2c ag as - ) ~ a (14a) 

or
 

Total Temperature Energy Equation
 
] +29 F g + V a -+2a - g )= [k(T /Pr)F (&- (14b) 

2~Fag an 2-fac Dan an Pr an 

where £ is the viscosity parameter defined by
 

z = pp/Pe~e (15) 

with U given from Sutherland's viscosity law and the turbulent
 

parameters, c and e^are defined as
 

= + F
(s/p) (16a) 

E 1 + p Pr r (16b)
PrT 

where r is the streamwise intermittency function: for fully laminar 

flow P = 0 and for fully turbulent flow r = 1, while for the 

transitional region its value varies smoothly from zero to one.
 

The parameters a and $ are obtained from the local inviscid flow as 

= u2/Te (17a)
 

_ 2g due 
 (17b)
 
ude
 

State Equation 

pe/p = e (18a)
 

2
 

or Pe/P = a2 (H - F2) (18b)
 

e
 



Boundary Conditions 

F(,n)= 0
 

V(En) 0 at n = w (1a)
 

S = Tw/Te 

or g (,n) = Iw/H e 

where nw = 0 for surface coordinates and nw = nw () for Cartesian
 

coordinates. Also we have that
 

F( n)= 1 

)=1 as n-* (19b) 

or g( ,n) = 1 

The turbulence relations given in Section 2 can be exnressed
 

in transformed variables as:
 

Inner Region
 

R p2 2 2 2 2 
(/) = / e e K 2 (20a) 

a2a 

where 1 = 1 - exp (-i 2 ) (20b) 

x2 Pe Us ( aRer e twi 3 1/2
2 82e (20c) 

Outer Region
 

T
E:/11i e Ue K kinc (20d)20 lie r 2 

6kinc =f 8 (1-F) dn (20e) 
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__ 

Note that, as far as the form theof governing equations is con­

cerned, the only difference between the use of surface coordinates
 

and Cartesian coordinates .is in the wall boundary condition
 

equation (19a). This can be eliminated using Prandtl's trans­

position theorem by writing that
 

9 =(21a) 

= n - nw() (21b) 

=V-2n P (21c) 

With these transformation equations (i2-14) and 
(19) yield:
 

Continuity Eauation
 

IV + 2 Z__r + F = O (22a) 

Momentum Equation
 

2 F aF + T7 = a £-aF (22b) 

or 3__F2=) + 2F__
2 F I+ V =F ++) (g-F + _ a_ (22c) 

an n a1 

Energy Equation 

2
2F + 3ae2_ I _V- +a- Pr 3-) (22d) 

or 

2Z F '09 +vT7. 2- Ei-s- __ £2e) (/Pr)2F- 2-, ~-(Pr
anlalan 
-

Boundary Conditions
 

F(L0O) = 1(0) = 0 

e ,0) = ew (Q) 

or g'Q,)= g () (23a) 

i i< ii 



and 

Fc)= 1 
e( ,o) = 1 

or g( ,c) = 1 (2 3b) 

The interacting boundary layer calculations require an initial
 

velocity and temperature profile at some station ahead of the
 

effective interaction region (see Figure 1). This profile was
 

obtained here from a noninteracting two dimensional laminar­

transitional-turbulent boundary layer calculation by an ordinary
 

marching technique using a prescribed pressure distribution.
 

4. Inviscid/Viscous Interaction Model
 

The interaction of the boundary layer with the isentropic
 

supersonic inviscid flow is modeled in the pressure gradient
 

parameter 8 by coupling it to the inclination 0T
. The edge
 

pressure is obtained from the Prandtl-Meyer relation approximated
 

here to second order in terms of aT as
 

6 -2) 2 + A 

e = + + 4(M - )+T (24) 

where 8T = tan-1 (d6T/dx) 
 (25a)
 

0T = Yw + dcos aS (25b) 

8S = tan- (dx 2 /dx 1 ) (25c) 

a =Re-h / 2 
r 2 (1 -- u) dx (25d)eUe 2
 

22
 w 

ORIGINAL PAGE IS 
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Once pe is obtained the isentropic relations and Euler's equation
 

are used to obtain 8 in equation (17b). Thus, the inviscid and
 

viscous flows must be solved simultaneously since they are
 

directly connected through the displacement thickness given in
 

equation (25c).
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NUMERICAL METHOD OF SOLUTION 

The numerical method used is an implicit finite difference
 

scheme written for the similarity form of the governing equations
 

that marches from some initial station along the surface to the
 

terminal point of interest. To account for the boundary value
 

nature of the problem, Werle and Vatsa 
[1 have added the time
 

dependent concept, similar to the one used for the solution of
 

elliptic partial differential equations. This results in
 

modification of only the momentum equation 
(22b) by replacing
 

the pressure parameter S with T defined as
 

3T 
 (26)
 

This method has been successfully applied to laminar separated
 

flow problems with various flow configurations including one with
 

multiple interacting regions [-2, 3]. The extension of this
 

approach to turbulent boundary layers involves, aside from inclusion
 

of the eddy viscosity model into the solution scheme, a number
 

of modifications (see also Ref. 6). Specifically, the following
 

steps were taken.
 

1. The numerical stability and convergence rate has been
 

enhanced by introducing a new differencing in the continuity
 

equation. It has only recently been recognized [7, 8) that the
 

longitudinal derivatives in the continuity equation provide a path
 

for interacting flows to propagate information upstream. To
 

accommodate this numerically requires the use of some sort of a
 

forward difference procedure. In the present work we adopt in
 

the continuity equation the following forward differencing
 

14
 



3F _ 1+l
3?o)- F.
 

where the superscript (o) denotes values at the previous time step
 

and subscript i refers to the ith s.tation along the length of the
 

surface. 

2. The reliability of the present algorithm was enhanced
 

by adopting the 'upwind differencing' concept for the longitudinal
 

convection effects. 
 In the reversed flow region upwind differencing
 

was used in the longitudinal direction for the convective terms
 

in order to satisfy the stability requirements. This eliminates
 

the so-called 'artificial convection' concept used earlier [2]
 

for the laminar case. This modification is significant because
 

the velocities in the reversed flow regions are larger in the
 

turbulent case than in the laminar. 
Thus the convection term in
 

the momentum equation is differenced as
 

3? 1 -F. (-)= - {Fi +I i (Fi - F )/A ++ 2 ' - i-

2F-FilFi+ 1 - Fi)/A$ (27) 

F. is replaced by F for forward flow, and by-F!0) 
for reversed
1 i-1 
- !0)flow. By replacing the Fi with FI the occurrence of a separation
 

point singularity is avoided [1, 6]. Note that the first term
 

on the right hand side of equation (27) vanishes for reversed
 
flow, and the second term vanishes for the forward flow. The
 

same procedure was followed with the 
term F8/3E in the energy
 

equation.
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Furthermore, the upwind differencing was found also helpful
 

in the n direction, in the convective dominated outer regions of
 

the thick turbulent boundary layer. It was brought to our
 

attention that upwind differencing of the aF/r term in the
 

momentum equation might be required to satisfy the convergence
 

criteria of the numerical scheme (see also Ref. 9). In the
 

boundary layer near the wall the diffusion term F dominates the
 

convective-like term F and a central difference scheme for F'
 
n n 

is appropriate. However, in the outer reaches of the boundary 

layer the diffusion term decreases significantly and numerical 

instabilities occur. From a study of- the model 

equation Fn + aF = 0 it is found that with central differencing 

the criteria Ia Ani < 2 must be adhered to, to avoid these 

oscillations. Hence the term F was central differenced when 

IjAnI < 1 and upwind differenced when ja Anp > 1. 

3. The convergence rate of the time relaxation solution
 

method for the thick boundary layers has been found much slower
 

than for thin boundary layers. The two cases differ largely in
 

that for the thick boundary layer the disturbance of the total
 

displacement body from the flat plate value is very small. It
 

was argued that the numerical truncation error can be of the same
 

order as this relative change per one iteration, thus leading to
 

very small convergence rate. We introduced therefore a new
 

variable DT in place of the total displacement body 6T The. DT
 

is defined as DT= [6T(gt) - 6i( i) /hs, where 6 i( i) is the
 

displacement thickness at the initial station and h is a constant
 

R.T. Davis, Personal Communication. ORIGmIAL PAGE IS
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of the order of the maximum protuberance height. Calculations
 

performed with this modification show improvement in the
 

convergence rate.
 

The accuracy of the calculated solutions depends on the degree
 

of precision of the finite-difference approximation and the step
 

size. In turbulent boundary layers, large changes occur in the
 

velocity profile in the inner layer very near the surface. A
 

sufficient number of mesh points are needed near the wall in order
 

to get a good resolution in the predictions of wall shear and
 

surface heat transfer. At the outer edge of the boundary layer
 

where the Levy-Lees variable n acquires large values, the changes
 

are, on the other hand, very small. This is especially pertinent
 

in the case of a thick turbulent boundary layer disturbed by a
 

relatively small protuberance. Thus, for reasons of efficiency
 

and accuracy a variable mesh size in the n direction is used in
 

solving most turbulent boundary layers. A mesh growing in size
 

from the wall as a geometric progression is used in the present
 

algorithm. Blottner [E0] has shown that in terms of a transformed 

normal variable N(r) replacing the stretched Levy-Lees variable n, 

the truncation error is proportional to AN2 as N 0, or the
 

method of calculation is second order accurate. At the jth grid
 

point the physical coordinate is obtained from
 

N./AN!/AN
 o
 
N / AN 0 =nmaxn x(K - )/(K 0- ) (28) 

where K = Anj/Aqj_l, Nj = (j-l)AN, (Jmax-l)AN = 1, and where AN
 

is the constant step in the transformed plane. The second order
 

accuracy is achieved by varying jmax and holding AN fixed [10).
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It was found here that if instead one replaced AN0 by AN, where AN 

is of course varying with i Max while holding K fixed the error 

diminishes with AN as K -i/ANi.e. much faster than AN2 . Further
 

details are given in Appendix A. Figures 2 show the surface heating
 

parameter's dependence on AN and thus provides an accurate error
 

estimation procedure. 
Based on this step size study it was found 

that with values of nmax = 200, jmax = 55, and K = 1.254, a 7% 

truncation error was incurred in the calculation of wall heat
 

transfer. This represents an acceptable compromise between the 

accuracy and the efficiency of calculations.
 

The governing equations were linearized and the partial
 

derivatives were replaced by finite differences. The eddy viscosity
 

term e/p, appearing as a nonlinear term in the governing equations,
 

is approximated by its previous station value. 
 Central differences
 

were used to represent partials with respect to n (except as
 

noted above where upwind differencing for F was required in the
 
n 

outer region of the boundary layer) as well as for the streamwise 

derivatives of the displacement body height, 6T" Upwind differencing
 

was used in the convective terms in the momentum and energy
 

equations and forward differencing with respect to E in the
 

continuity equation.
 

The calculation commences with certain initial conditions and 

then through the time dependent approach [1] the steady state 

solution for a given set of boundary conditions is sought. In
 

the present calculations the initial conditions were set by taking
 

the zero time displacement body to correspond to a flat plate
 

boundary layer and the surface protuberance to be of zero height.
 

Subsequent time sweeps are conducted with the wave amplitude 

is
 



increasing gradually by a small amount. 
After the desired geometry
 

is reached (after the first 10-15 sweeps) the time-like relaxation
 

process is continued until the flow properties are relaxed to
 

the final value. This process is shown in Figure 3a where
 

the skin friction coefficient at one location (s = 3.58) is shown
 

as a function of time iteration number. This location is near
 

the junction of the flat plate with a single sine-wave protuberance
 

where separation occurs. The resulting skin friction and
 

surface heating distributions are shown in Figure 3b. For this
 

case with a thin boundary layer, the calculation was performed
 

in surface coordinates. Figure 3a shows that once the full
 

protuberance height is attained (11 sweeps) it takes about 50
 

more sweeps for the skin friction to attain its 'steady state'
 

value. This calculation, with 41 normal grid points and 71
 

longitudinal grid points were performed in 5 minutes of
 

computer time on the IBM 370-168.
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RESULTS AND DISCUSSION
 

A major interest of the present investigation is in the
 

numerical predictions for thick turbulent boundary layers over
 

a wavy wall, as those in the experiments of reference [11].
 

The geometry and the flow conditions were therefore chosen to
 

coincide with those given in reference [li]. The amplitude
 
* * 

and wave length are a = 0.29 cm, w = 3.66 cm respectively. 
* 

A reference length L = 15.25 cm was chosen. The base flow 

conditions are defined by M. = 2.53, Re = 10.82 x 10 6/m, 

T = l74 0K and Tw/T = 0.81. Henceforth, we refer to these 

conditions as standard flow conditions. 

To obtain the present results it is first necessary to 

generate initial profiles at some point ahead of the first 

protuberance-flat plate juncture. For the standard flow condi­

tions this station was taken at x = 72.90, where the initial 

profiles were obtained from a noninteracting calculation to 

correspond to the boundary layer as it develops along the wall 

of the UPWT Langley Wind Tunnel [11]. The details concerning 

the calculation of the initial profiles are described in 

Appendix B. The interacting algorithm was subsequently employed 

between this initial station and a downstream station past the 

last protuberance. The problem was first formulated and solved 

in the customary surface coordinates. It turned out that the 

geometry extremes make the use of the Cartesian coordinates 

version of the boundary layer equations more reasonable. The 

results of the calculations shown here were performed with a 

longitudinal stepsize Ax = 0.02, and a 55 point grid across the
 

boundary layer. IOIGPI1AL PAGE 1 
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Examples from the calculated results are presented for flow
 

over a train of up to six waves, for Mach numbers M. = 2.5 and
 

3.5, for Reynolds numbers = 10.82
Re x 106/m and 32.46 x 10 6/m
 
and for wall to total temperature ratios Tw/To = 0.40 and 0.81.
 

Figure 4 shows the contour of a train of six waves, the
 

displacement body and the viscous and inviscid pressure distri­

butions for the standard flow conditions. The difference in the
 

inviscid and viscous pressures dramatically shows the effect and
 

need for interaction. The pressure is calculated from an
 

approximation to the Prandtl-Meyer relation, accurate to second
 

order in flow inclination angle. The inviscid pressure is
 

calculated using the local body slope, whereas the viscous
 

pressure is obtained by using the slope of the displacement
 

'
body T = Yw + 6) The difference in the viscous and inviscid 

pressure is due to the difference in amplitudes of the actual (yw)
 

and displacement (6T) body. It is interesting to observe that the
 

viscous pressure is almost periodic even though the average
 

displacement thickness decreases. 
Figure 5 shows with the
 

distribution of pressure the corresponding distribution of
 

surface heat transfer and skin friction at the same base flow
 

conditions. The pressure peaks and peaks in heating occur at
 

about the same location ahead of the body surface peak. The
 

peak in skin friction is shifted in the opposite direction.
 

While the pressure distribution is nearly periodic, the heating
 

levels and the skin friction peaks rise in the downstream
 

direction. 
The rate of rise in peak heating is decreasing very
 

slowly. These results are in contradistinction to our similar
 



study [3] of thin laminar flow over a train' of sine-waves, where 

the peaks in heating decreased rapidly in the streamwise direction.
 

Figure 6 points out the fact that the local value of the surface 

parameters is almost unaffected by the presence of additional 

downstream disturbance for turbulent boundary layers (compare 

also Figures 5 and 6). Simply, downstream waves have little
 

upstream influence and the problem 
-seems localized. Heating
 

levels aft of waves 
grow as the number of waves increases, but
 

the downstream skin friction is unaffected by the number of waves.
 

To demonstrate the effect on surface properties due 
to Mach
 

number, wall temperature, and Reynolds number, three additional 

cases are 
shown in Figures 7A,B through 9A,B. The increase of
 

Mach number (Figures 7A,Bj from 2.5 
to 3.5 causes a decrease 

in the ratio of hmax/hf... As in the standard flow case, 

the location which the first wave was placed was chosen in such
 

a way that the flat plate boundary layer displacement
 

thickness was about the same as 
in the experimental study of
 

reference [l!].
 

The lowering of wall temperature to Tw/To = 0.40 (Figures 8A,B) 

shows a similar trend in hmax/hf.p, as for the increase in Mach 

number. nut the absolute rate of surface heating is much higher 

than in the previous case. Interestingly, the h/hf.p curve is
 

smoother here than in other cases.
 

Lastly, an increase in Reynolds number, shown in Figures 9A,B 

is seen to cause a slight increase in the ratio of peak heating. 
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An interesting aspect of the present results is the location
 

of the peaks in pressure, heat transfer and shear. The present
 

predictions show the peaks in pressure and heating to occur at
 

about the same location. This is in agreement with experimental
 

observations [11]. The location of the peak pressure in the
 

present results is shifted to the right of the location of the
 

inviscid peak pressure location (at y 2 0) by a phase angle of
 

about 600. Theoretical studies by Inger and Williams [12] and
 

by Lekoudis et al. [13] predict such a shift. Data fr6m these
 

studies given up to M. = 2.0 show a shift to the left which drops
 

off quickly towards zero at M = 2. It is therefore possible
 

to expect a phase angle in the opposite sense for M > 2, as is 

the case in present results. The maximum wall shear location
 

obtained from present calculations is shifted to the right of the
 

peaks in pressure and surface heating by about 60g. According
 

to theoretical predictions f13] qualitatively such a shift is
 

expected. Experimental data available at the same flow conditions
 

Ill] show a periodic trend in surface pressure as well as in
 

the surface heating distribution. The periodic trend in surface
 

pressure is observed also in the present predictions. 

Pressure and heating distributions between the second and 

third peak are compared to the experimental data [11 for Mach 

numbers 2.5 and 3.5 in Figure 7B. While the heating dis­

tributions in the experiments of reference [11] are nearly 

,repet-itivc over consecutive waves, the present predictions
 

show a continuous increase over the length of the waves. Note
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though that in the experimental study there is also indication
 

that separation occurs, while a lack of separation is observed
 

in the analytical results of Figure 5. The cause of this
 

disagreement is not certain but it could well be due to our
 

choice of turbulence model or in the fact that the present
 

calculations do not simulate well enough all the test conditions
 

(three-dimensional effects or boundary layer development on the
 

tunnel wall). Note the calculated boundary layer displacement
 

thickness of the initial profile at station x = 72.90 is
 

2.86 cm, close to the value given in reference [11]. However 

the predicted surface heating value at this station is too high 

when compared to experimental data of reference [113 CThe 

predicted value is hf.p. = 96.5 watts/m 2 OK vs 62.5 watts/m 2 K 

in experiments). Other prediction methods also typically over 

predict to about the same level the heat transfer rates for 

boundary layers developing along the wind tunnel walls [14] 

thus indicating that some final adjustments may be needed in 

the turbulence model for these flows. 

While the present prediction method has in a certain way
 

accounted for the boundary layer displacement effect by using
 

the interacting boundary layer equations, the effect of surface
 

curvature was neglected. The curvature effect in turbulent
 

flows has been summarized in a comprehensive monograph by
 

Bradshaw [15]. It has been found that even in cases when the
 

longitudinal surface curvature is accounted for in the governing
 

equations the predicted surface aerodynamic parameters tsurface
 

heating, wall shearl still deviate considerably from the
 

experimental data. Apparently, the streamline curvature has an
 

I A 



effect on the turbulence structure not included in the existing 

turbulence models. Bradshaw therefore proposed a simple 

correlation scheme applicable to turbulent flows with not too 

large streamline curvature. For the simplest equilibrium model 

used in the present work this correction consists of multiplying 

the mixing length by a factor f = 1 +ae/(au/ayl, where e = av/ax 

is the extra rate of strain induced by the streamline curvature 

(and au/ay is the mean rate of strain). This correction is
 

recommended for only 0.5 5 f 5 1.5. The constant a is of
 

order 10. Because of the time lag between the first appearance
 

of the curvature and its full effect on turbulence the effective
 

value of ae is calculated from the lag equation
 

106 (ae)ef = coe - (ae)eff (29)dx f f 

where a is the boundary-layer thickness, and the constant a is 

taken to be 10. This idea has been implemented here for the 

standard test case by evaluating av/3x along a streamline at 

each station x. It was then assumed that this is a representative 

value for all values of y at this station. The 6 was taken to 

correspond to station x = 73.20. The case with base flow 

conditions was recalculated. It was found that a streamline 

had to be chosen in the lower part of the inner layer Cpassing 

the 21st grid point at x = 73.201 in order not to violate the 

condition 0.5 f 1.5. The results of this calculation are 

shown in Figures !OA,B. Observe that the peaks in h/hf.p, and 

Cf are now lower and slightly dropping along the wall. A 

comparison between the detailed distribution of the surface 
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heating calculated with and without the curvature correction,
 

and against the experimental data is shown in Figure 10b. The
 

comparison with experiments is now more favorable on the
 

compression side of the wave. Recall however that in the wind
 

tunnel tests the boundary layer was separated.
 

To examine the effect of separation on the character of
 

the heating distribution and also to demonstrate the capability
 

of the method to solve multiple separation regions, calculations
 

without curvature correction were performed with the base
 

flow conditions but for a boundary layer developed along a flat
 

,plate up to the junction point x = 24.30 (Figures llA,B).
 

It is noticed (Fig. liB) that when compared to the unseparated
 

case, the heating values are lower on the expansion side of
 

the wave. Flow separation occurred in this case due to the
 

different history and also because of the larger pressure
 

gradients: the ratio 6/a is here smaller than for the standard
 

case and therefore the slope of the total 'displacement body
 

steeper. This is even more apparent for a relatively very thin
 

boundary layer. Figure 12 shows the results from a calculation
 

performed at the same flow condition as in Figure 11, except
 

that junction of the flat plate and the first protuberance
 

was moved forward to x = 3.3 and the wave height was reduced to 

one-half of the previous value. Larger pressure gradients and
 

separation regions now appear closer to the center of the
 

valleys are observed. Again, the peak heating rates grow in
 

the streamwise direction.
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In reference [11] it was found that unlike for thin boundary 

layers, the peak heating rates were insensitive to the wave 

amplitude. To examine this question a set of calculations 

were performed for different ratios of wave amplitude to wave
 

length, a/w. According to the present predictions the heating
 

rates change considerably with the amplitude even for the
 

thick boundary layers (Figs. 13A,B). For both thick and thin
 

boundary layers the peak heating values, (h/hf.p)max,are
 

plotted in Figure 14. The present predictions show similar
 

behavior for both thin and thick boundary layers: a stronger
 

than linear increase in peak heating with the increase of 

wave amplitude. Note that the curvature effect on turbulence
 

was not accounted for in the results shown in Figures 13
 

and 14. The larger curvatures corresponding to.higher amplitude
 

waves probably amplify the predicted trend observed in
 

Figures 13 and 14.
 



CONCLUSIONS
 

A numerical method capable of handling multiple interacting 

flow regions was adapted to the problem of thick turbulent
 

boundary layer over a wavy wall.
 

The results of calculations presented in terms of surface
 

pressure, skin friction, and heat transfer distributions disclose
 

features distinctly different from the laminar case. 
 The
 

present results show a shift in the location of the viscous
 

pressure peaks relative to the peaks in the inviscid pressure
 

and to the peaks in the wall shear. These phase shifts are
 

in qualitative agreement with theoretical predictions based
 

on small disturbance theory. -The location of peaks in viscous
 

pressure and heat transfer coincide, and the longitudinal
 

pressure variation is periodic. This is in agreement with the
 

experimental data. The experiments also show periodicity in
 

surface heating distribution, while the present results predict
 

a continuous increase in heating indicating a possible weakness
 

in the turbulence model for a surface with rapidly varying
 

curvature. A semi-empirical modification of the eddy viscosity
 

model, intended to account for the longitudinal curvature
 

effect, aligns the predictions closer to the experimental data.
 

It is recommended that future work be carried out with a more
 

accurate turbulence model, and that a more optimal coordinate
 

system be adopted for this problem.
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APPENDIX A
 

GRID SIZE EFFECT ON ACCURACY
 

The objective is to assess the accuracy of the predicted
 

surface boundary layer characteristics from the standpoint of the 

normal mesh size. The very thick turbulent boundary layer as
 

produced on the wall of the UPWT Langley tunnel is of interest 

here. The boundary layer calculation is carried out as an
 

non-interacting 2-D laminar-transitional-turbulent boundary 

layer. The corresponding pressure gradient is calculated from
 

the Mach number distribution given in Appendix B. 

The free stream conditions in the test section are: M = 

2.535, Re./cm = 1.08 x l05, T = 3140R, Tw/T ° = 0.81 and P. = 

199 psf. And Pr = 0.72, PrT = 0.9 were taken. The calculation
 

commences at s = 0.3 with a laminar boundary layer, which 

becomes fully turbulent at s = 2.1 (As = 0.1). The Mach number 

becomes constant at s = 40.60. The implicit finite-difference 

method (Flugge-Lotz-Blottner-Davis) with non-uniform grid size,
 

varying according to a geometric progression law, is employed.
 

The truncation error in this type of calculation is
 

proportional to the quantity (nj+ 1 - 2j + nTj I nij - Anj 1 ,
 

and therefore in general not second order accurate. Blottner 

has shown [10] that in terms of a transformed variable, N = N(n), 

where the coordinate N is obtained by coordinate stretching
 

such that AN is uniform, the error is of order AN 2 . Blottner 

substantiates his conclusion by a set of calculations fising the
 

transformation 
N./AN- 1/AN0 

nj = nj(K - i)/(K -1) 



where j = 1, 2, =j tmax = number of grid points,
 

N. (j-l)/(J-i), K = An/Anj_l, and AN = constant. 

A similar type of transformation, corresponding to the
 

geometrical variation of An. is 
also employed here:
 

Nj/AN 1/AN'Vj. (Kj - 1)/(K - 1) 

where AN = 1/(J-1) and K = K (= 1.12) does not vary with J. 

Since the local truncation error is 

- _ = ('2n) AN2 + 0(AN
j j+ ! 2j +j­

(inK 2 KN/ANand a n/N2 ) 


o
K - 1 
0 

we get
 

2 N./AN 1/AN 
E lnK0 K0 nmax/(K - i) 

At a fixed grid location j Nj/AN = j-l), and for a large l/AN 

the error should be therefore plotted versus K-i/AN. 

A set of calculations was carried out with J = 80, 85, 90, 

95, 100, 125 and 150 for K = 1.12 and two values of nj
 
(nj = 352 and 200). For the station s = 54.0 (a location on
 

the straight section of the tunnel wall) 
the wall heat 

transfer parameter (ag/an) is shown in Figure 2A.w 

As the error term suggests, the error decreases with decreasing
 

of nmax' and plots linearly with K-l/AN as AN 0. It is also 
observed that the two point formula [103 (used in conjunction with
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the governing equations evaluated at the wall) for evaluating 

(ag/'n)w gives better results, especially at the excessive value 

of nmax* 

In a second set of calculations the value of K was varied 

together with J in a specified way: 

K = K 0 ; ( =(J-)m - 1J 

Here K° = 1.12, m = positive integer, Jo = 109, nj = 200. We
 

take m = 1, 2, 3 or 4, so that J = 109, 55, 37 or 28.
 

Then,
 
mN./AN m/AN
 

T1= njI(K 1)/(Ko - 1), 

AN = 1/(J-l) = n/(J -1) = mAN ° 

1

j n 5 (K0 (5 0 -l)Nj 1)/(l /AN 

Thus the transformation is independent of AN and the error 

term, as in reference [10], is now proportional to AN 2 . This 

is exhibited in Fig. 2B where the variation of the surface heat 

transfer parameter at station s = 54.0 is plotted for values 

J = 109, 55, 37 and 28 (compare with Figure 2a). These calculations 

were performed by first setting K. = 1.12 and J = So = 109 

for 0.3 < s < 44.3. At s = 44.3, every 2nd, 3rd or 4th grid 

point value was used (corresponding to m = 2, 3 or 4) and the 

calculation marched (with the new value J = 55, 37 or 28 and 

K = K m) past station 44.3. 
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In summary, Blottner's interpretation of the accuracy of
 

the variable grid size was extended by showing that the error
 

term of the numerical scheme varies linearly with the
 

inverse square of the number of grid spacings, (J-l), when K
 

and J are varying in a specified way, but also plots linearly
 

with the inverse exponential of (J-1) when K is fixed.
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APPENDIX B
 

INITIAL PROFILES FOR THICK BOUNDARY LAYERS
 

A major aim of the present research project was to align 

numerical predictions for flow of thick turbulent boundary-layers 

over a wavy wall with the experimental program of reference [11]. 

For this reason a set of calculations were first performed for 

the boundary layer as it develops along the wall of the UPWT 

Langley Tunnel. The boundary-layer calculation was carried out 

as a non-interacting two-dimensional laminar-transitional­

turbulent boundary-layer developing from ahead of the nozzle 

throat under a favorable pressure gradient. in the supersonic
 

region downstream of the throat the pressure distribution was
 

calculated from the sidewall Mach number distribution, using
 

isentropic relations. The Mach number distribution was obtained
 

from a characteristics net. From these data a cubic 

representation for M was assumed of the form 

2
 
M = M K 1 (l-s) (l sx__)


1 ST ( 2 ST
 

where MT = test section Mach number at s = sT' The above 

polynomial representation satisfies the condition dM/ds = 0 

at s = sTV At the location s of the first characteristic near 

the throat the Mach number was estimated to be M = 1.11. The 
a 

measured distance along the wall from s to sT is 39.6 (- 20 ft). 

At a location s,, 8.86 units downstream of sathe Mach number 

is M = 1.84. Letting s. = 1, s =9.86 and s. = 40.6. Using 



these values, the constants K1 and K. can be determined. For 

Ki K2 > 0 and K2 < 
1 (which is the case here) the polynomial
 

representation given above yields monotomically increasing
 

Mach number. The subsonic-transonic section of the tunnel was
 

also assumed to be represented by a cubic polynomial
 

2
 
M=M. + C! (1 - s (I - C
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At s = s. = 0.3, M = M. and dM/ds = 0 

At 
 , 4= M = 1.11 and dMjdMi) 
a+
 

Three different values for Mi were chosen: 0.01, 0.03 and 0.05.
 

It turned out that the boundary layer development downstream of
 

the throat was not sensitive to these initial values. 
 Taking
 

M.i 0.03, a boundary layer calculation was performed for
 

0.3 < s < 97.4 with boundary layer profiles punched on IBM cards. 

(At s = 40.6 the Mach number becomes constant on the side wall; 

at s -.50.6 the straight section begins.) These profiles were
 

used as initial data for the interacting thick turbulent boundary
 

layers. The table below gives the calculated boundary layer 

displacement thickness distribution along the constant Mach number
 

section of the UPWT Langley tunnel wall at ten stations, for 

MT - = 2.53, T = 174.40K, T /T = 0.81, Re = 1-0.82 x 106/,T 
 w 0 

Pr = 0.72 and Pr T = 0.90. 

s 40.6 44.6 48.6 52.6 56.6 60.6 64.6 68.6 72.6 76.6 

6 (cm) 1.69 1.84 1.98 2.12 2.26 2.40 2.5.4 2.67 2.80 2.93 
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