221 research outputs found
Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS
The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse-but not in Mpe-Treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptom
(1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis
OBJECTIVE: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis.
METHODS: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by (1)H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated.
RESULTS: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98).
CONCLUSION: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of M
Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129
We present new observations of the galaxy cluster 3C 129 obtained with the
Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to
image the large-angular-scale emission at high-frequency of the radio sources
located in this cluster of galaxies. The data were acquired using the
recently-commissioned ROACH2-based backend to produce full-Stokes image cubes
of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and
deconvolved the telescope beam pattern from the data. We also measured the
instrumental polarization beam patterns to correct the polarization images for
off-axis instrumental polarization. Total intensity images at an angular
resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and
for 13 more sources in the field, including 3C 129.1 at the galaxy cluster
center. These data were used, in combination with literature data at lower
frequencies, to derive the variation of the synchrotron spectrum of 3C 129
along the tail of the radio source. If the magnetic field is at the
equipartition value, we showed that the lifetimes of radiating electrons result
in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear
projected length of 488 kpc for the tail, we deduced that 3C 129 is moving
supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized
emission was clearly detected for both 3C 129 and 3C 129.1. The linear
polarization measured for 3C 129 reaches levels as high as 70% in the faintest
region of the source where the magnetic field is aligned with the direction of
the tail.Comment: 19 pages, 17 figures, accepted for publication in MNRA
Mucuna pruriens (Velvet bean) Rescues Motor, Olfactory, Mitochondrial and Synaptic Impairment in PINK1(B9) Drosophila melanogaster Genetic Model of Parkinson's Disease
The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3–6 (I), 10–15 (II) and 20–25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment
Application of molecular cytogenetic techniques to clarify apparently balanced complex chromosomal rearrangements in two patients with an abnormal phenotype: case report
<p>Abstract</p> <p>Background</p> <p>Complex chromosomal rearrangements (CCR) are rare cytogenetic findings that are difficult to karyotype by conventional cytogenetic analysis partially because of the relative low resolution of this technique. High resolution genotyping is necessary in order to identify cryptic imbalances, for instance near the multiple breakpoints, to explain the abnormal phenotype in these patients. We applied several molecular techniques to elucidate the complexity of the CCRs of two adult patients with abnormal phenotypes.</p> <p>Results</p> <p>Multicolour fluorescence in situ hybridization (M-FISH) showed that in patient 1 the chromosomes 1, 10, 15 and 18 were involved in the rearrangement whereas for patient 2 the chromosomes 5, 9, 11 and 13 were involved. A 250 k Nsp1 SNP-array analysis uncovered a deletion in chromosome region 10p13 for patient 1, harbouring 17 genes, while patient 2 showed no pathogenic gains or losses. Additional FISH analysis with locus specific BAC-probes was performed, leading to the identification of cryptic interstitial structural rearrangements in both patients.</p> <p>Conclusion</p> <p>Application of M-FISH and SNP-array analysis to apparently balanced CCRs is useful to delineate the complex chromosomal rearrangement in detail. However, it does not always identify cryptic imbalances as an explanation for the abnormal phenotype in patients with a CCR.</p
A digital beamformer for the PHAROS2 phased array feed
PHased Arrays for Re°ector Observing Systems (PHAROS) is a C-band (4–8 GHz) Phased Array Feed
(PAF) receiver designed to operate from the primary focus of a large single-dish radio astronomy antenna.
It consists of an array of 220-element Vivaldi antennas (10 11 2 polarization), cryogenically cooled at
roughly 20K along with low noise ampliÂŻers (LNAs), and of analogue beamformers cryogenically cooled at
roughly 80 K. PHAROS2, the upgrade of PHAROS, is a PAF demonstrator developed in the framework of
the Square Kilometer Array Advanced Instrumentation Program (SKA AIP) with the goal of investigating
the potential of the PAF technologies at high frequencies in view of their possible application on the SKA
dish telescopes. The PHAROS2 design includes new cryogenically cooled LNAs with state-of-the-art performance,
a digital beamformer capable of synthesizing four beams from a sub-array of 24 single-polarization
antenna elements, and a C-band multi-channel Warm Section receiver capable of analogue ÂŻltering
and down-converting the signals from the antennas to a suitable frequency range at the input of the digital
backend, providing an instantaneous bandwidth of 275MHz for each signal. In this paper, we describe the
design and performance of the PHAROS2 digital backend/beamformer, based on the Italian Tile Processing
Module (ITPM) hardware, which was initially developed for the SKA Low Frequency Aperture
Array (LFAA). The backend was adapted to perform the beamforming for our PAF application. We
describe the implementation of the beamformer on the Field Programmable Gate Arrays (FPGAs) of the
ITPM and how the backend was successfully used to synthesize four independent beams, both in the
laboratory (across the entire 275MHz instantaneous bandwidth) and during on-ÂŻeld observations at
the BEST-2 array (across 16MHz instantaneous bandwidth), which is a subset of the Northern Cross Radio
Telescope (located in the district of Bologna, Italy). The beamformer design allows re-scaling to a greater
number of beams and wider bandwidths.peer-reviewe
Analysis and applications of respiratory surface EMG:report of a round table meeting
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited—in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.</p
Analysis and applications of respiratory surface EMG:report of a round table meeting
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited—in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.</p
Analysis and applications of respiratory surface EMG:report of a round table meeting
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.</p
- …