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. The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna

. pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS).

© In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively
overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function)

. in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span,

© with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle
electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia
mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while
Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also
latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally,
mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants.
Hence, given the role of inflammation in the development of ALS, the high translational impact of the

 model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use,

. these results suggest that the application of Wse and Mpe might represent a valuable pharmacological

. strategy to counteract the progression of ALS and related symptoms.

. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of brain
: and spinal cord motoneurons (MNs). This affects the voluntary movements and relentlessly leads to paralysis
of the whole body and finally death within 3 to 5 years of onset. Approximately 10% of ALS cases are inherited
and around 20% of these familial cases are linked to mutations in the gene encoding the enzyme Cu/Zn super-
oxide dismutase 1 (SOD1)"% SOD1 is ubiquitously expressed in all cells and its best characterized function is
. the dismutation of the highly toxic superoxide anion radical into molecular oxygen and hydrogen peroxide, thus
: providing a defence against reactive oxygen species toxicity. To date about 150 ALS associated mutations in SOD1
. gene have been identified, the majority of which are missense point mutations. Mutated SOD1 gene can acquire
both gain and loss of function. In mice, lack of SOD 1 function does not lead to development of neurodegenera-
© tion, while its over-expression leads to ALS symptoms?~®. This evidence suggest that the toxicity related to these
mutations depends on a toxic gain of function (GOF) rather than on a loss of function (LOF). The cellular and
molecular mechanism through which these mutations (mutant SOD1) induce onset and progressive spreading
of ALS pathology is complex and still not fully understood. This mechanism includes oxidative stress, mitochon-
drial damage, axonal transport impairment, glutamatergic excito-toxicity, activation of endoplasmic reticulum
© stress, RNA metabolism impairment, interaction with glial cells® and protein aggregation’. In fact, SOD1 mutant
. proteins tend to be misfolded and form protease-resistant aggregates causing death of motoneurons®. Mutant
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SOD1 can seed misfolding and aggregation of endogenous wild-type SOD1 and transfer from cell to cell causing
the intercellular transmission of disease through the central nervous system, a propagation mechanism similar to
prion replication and spreading®'°.

It is worth noting that both insects and human beings share a number of genes and the organization and
cellular function of the nervous system, making the Drosophila melanogaster a useful and powerful model for
understanding the biological bases of human pathology and gaining evidence of high translational significance
of such model and its potential therapeutic effectiveness. Accordingly, a number of neurodegenerative diseases,
including Alzheimer’s''~!? and Parkinson’s diseases!*™!° as well as ALS, object of this study?**, are heuristically
modeled in Drosophila. However, despite the significant progress in the knowledge of the biological bases of the
degenerative diseases, the hope to find an efficient treatment has been, so far, elusive, as no treatment can halt
their progression, with the partial exception of the antiglutamatergic Riluzole®.

In this context, given the results obtained in two different Drosophila models of Parkinson disease
(PD-LRRK2-LOF and PD-PINK1¥-LOF) with the application of two methanolic extracts of parts of the medic-
inal plants, Withania somnifera and Mucuna pruriens widely used in the Ayurvedic medicine!’-1%?2-2 for their
potential effects on treating many central nervous system disorders, we deemed to investigate their effects on
ALS symptoms. In order to obtain experimental data, we proceed to set up a neurophysiological, biochemical
and histological investigation using the hSOD1-GOF Drosophila model of ALS. Thus, based on the observations
(1) that the PD-LRRK2 and ALS-SOD1 diseases share common oxidative stress- and neuroinflammation-based
mechanisms and (2) that both Withania somnifera and Mucuna pruriens are endowed with potent anti-oxidative
and anti-inflammatory properties, the results of the present study are expected to provide new data on the patho-
physiology of ALS models and to suggest possible new vistas in the inflammatory, oxidative stress, genetic roles
correlated to this neurodegeneration. In particular, given that neurodegenerative diseases are often associated
with abnormal protein accumulation?%, the mechanism by which ALS may take place is by the overexpression of
human SOD1 in the motoneurons in agreement with Stathopulos et al.”” that could be regarded as a destabilizing
solution condition resulting as a consequence in loss of mitochondrial functionality and also in altered vescicle
trafficking. Thus, in particular, Mpe treatment might enhance bruchpilot synthesis similarly to what we found
in another neurodegenerative disease in PD-PINK1® Drosophila mutants'®, while Wse treatment might act by
enhancing the vesicle trafficking as previously suggested in LRRK2'. Moreover, in the context of current knowl-
edge about the mechanism of action of these drugs, even if they do not specifically regard ALS, a few references
provide insight on the mechanism by which these compounds exert their anti-inflammatory effects?>%.

Results

Wse, but not Mpe, treatment enhances survival rate of hSOD1 flies. Figure 1a shows that the
mutant hSOD1 that over expressed human SOD1 in the motoneurons exhibited no significant change in lifespan
compared to GAL4. Accordingly to previous results, obtained with fly models of Parkinson’s disease'®!°, the
hSOD1 mutants were treated with Wse or Mpe at 0.1% w/w in their standard diet starting from larvae stage
(Lt/A™) or as adults only (L7/A™). As shown by Kaplan-Meier survival curves, administration of Wse as L~/A*
exerts great significant effects in mutant flies (Fig. 1b) with a significant increase in lifespan compared to not
treated mutants. Surprisingly, the average lifespan of Wse-treated hSOD1 mutants was also longer than that of
GAL4 (being 50% and 58% of survival at 40-days-old in GAL4 and in Wse-treated hSOD1 mutants, respectively).
In contrast, Mpe administered as L~/A™ had no effect on the lifespan of mutant hSOD1 (Fig. 1c) (p > 0.05 at
Gehan-Breslow-Wilcoxon test). As expected, neither Wse nor Mpe affected the lifespan of the GAL4 control flies
(Fig. 1d). In addition, when administered as L*/A*, a dramatic decrease of the lifespan was induced by both Wse
or Mpe (Fig. 1b,c).

Wse and Mpe treatment ameliorates the climbing behaviour of hSOD1 flies.  As shown in
Fig. 2a, hSOD1 mutants showed a significant increase in the climbing time in groups I and II compared to the
GAL4 line, with a worsening trend with aging displayed at age stage III in which also GAL4 showed a significant
slowing-down of climbing activity. Notably, flies overexpressing hSOD1 in motoneurons showed a significant
impairment of climbing activity within the first week (age group I shown in Fig. 2) when compared with flies
expressing dSODI i.e. GAL4. In order to further characterize the effects of the extracts on this genetic model of
ALS, we tested climbing activity of flies administered with Wse or Mpe (Fig. 2a,b) (as L"/A™). Administration
of Wse or Mpe was done in these experiments only in the condition L™/A*, suggested by the lifespan experi-
ments which demonstrated that the administration to flies as L*/A™ resulted in a dramatic decrease of lifespan.
Treatment of groups I-III of hSOD1 mutants with both Wse or Mpe (0.1% w/w) induced a recovery of motor dis-
ability compared to untreated mutants. Moreover, the percentage of flies that achieved the target (10s) was very
close to 100% in both Wse- and Mpe-treated flies, higher than those of untreated mutants and, surprisingly, also
in respect to age-group III GAL4 flies (Fig. 2a,b).

Wse and Mpe affect kinetic properties of evoked PSPs recorded from DLM in hSOD1 mutant
flies. In these experiments we first evaluated the potential changes in the function of the DLM neuromus-
cular junction of hSOD1 (group II) compared with GAL4 control flies. Basal kinetic properties (amplitude and
latency) of evoked PSPs (ePSPs) recorded from the DLM after Giant Fibre System (GFS) electrical stimulation
were analyzed. ePSPs recorded from DLM muscle of GAL4 animals had an average amplitude of 30.98 £3mV
and a latency of 0.92 £ 0.1 ms (Fig. 3a-c). Responses measured in hSOD1 mutants were characterized by a sig-
nificant decrease in amplitude [20.32+2.7 mV, one-way ANOVA, F (3,61) =3.71, P < 0.05 vs GAL4 Bonferroni’s
post-hoc] and a significant increase in latency [1.4+ 1.1 ms, F(3,61) =5.57, P < 0.01 vs GAL4 Bonferroni’s
post-hoc] (Fig. 3a—c), suggesting that this mutation hampers the function of GFS-DLM muscle conduction.
Interestingly, treatment of hSOD1 flies with Wse or Mpe reverted the reduction in ePSP amplitude as well as the
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Figure 1. Effects of Withania somnifera extract (Wse) and Mucuna pruriens extract (Mpe) treatment on
lifespan. (a) Lifespan, expressed as survival rate (%), of untreated isogenic flies (Gal4) and untreated mutant
flies (hSOD1). (b) Lifespan of untreated hSOD1 compared to Wse-treated hSOD1, only when adults (L/A™)
and from their larval stage to the end of their life cycle (L*/A*). (¢) Lifespan of untreated hSOD1 compared to
Mpe-treated hSODI, only when adults (L~/A™) and from their larval stage to the end of their life cycle (L*/A™").
(d) Lifespan of untreated GAL4 control flies compared with Wse- and Mpe- treated flies only when adults (L7/A™).
*Indicates p < 0.05 at Kaplan-Meier survival curves (Gehan-Breslow-Wilcoxon-Graph Pad Prism 5.01),

(b) untreated hSOD1 compared to (L7/A™) and (L™/A*) Wse-treated hSOD1 and (c) untreated hSOD1
compared to (L*/A™) Mpe-treated hSOD1.

increase in latency with values that were not significantly different to those observed in GAL4 flies (P > 0.05,
one-way ANOVA, Bonferroni’s post-hoc) (Fig. 3a,c).

Wse and Mpe ameliorate the ePSP responses to increasing stimulation frequency of GFS in
hSOD1 mutant flies. We further tested flies, from the different experimental groups, by recording the “fre-
quency of following” which consisted in applying a train of 10 stimuli at different frequencies (from 10 to 200 Hz,
with steps of 25 Hz) to GFS. As previously reported'®*'*, in control flies the number of failures increased depend-
ing on the increase in simulation frequency. In particular, in GAL4 flies a train of 10 stimulations delivered at
100 Hz induced a limited rate of failures (8.3 - 5.6%), while a train at 200 Hz resulted in a predictive and consist-
ent increase in failures percentage (27.5 £ 8.9*%, P < 0.05, one-way ANOVA, Bonferroni’s post-hoc) (Fig. 4a,b,d).
Interestingly, when hSODI flies were exposed to the same protocol, the rate of failures at both 100 and 200 Hz
resulted significantly enhanced with respect to GAL4 flies [F(2,41) = 6.8, P < 0.05, two-way ANOVA Bonferroni’s
post-hoc] (Fig. 4a,b,d). Our findings are also consistent with behavioural data where hSOD1 mutant flies showed
uncoordinated movements impairments that, in turn, could be related to the low probability of muscle con-
traction. As observed for the basal properties of ePSP, treatment with either Wse or Mpe was able to antagonize
the increased rate of failures in response to train stimulations and the percentage of failures observed at 100 Hz
showed values not significantly different from those observed in GAL4 flies (Fig. 4a—e). Surprisingly, both Wse
and Mpe treatment were able to prevent the effect of the mutation making the response latencies and amplitude
recorded in hSOD1-treated flies indistinguishable from those in the GAL4 flies.

Interestingly treatment with Wse and Mpe in GAL4 animals failed to change both sPSP amplitude and latency
when compared with untreated GAL4 animals (one-way ANOVA, F (2,24) =1.19, P > 0.05 vs GAL4 Bonferroni’s
post-hoc) (Fig. 5a,b). Moreover, even for “frequency of following” responses, treatment with Wse and Mpe in
GAL4 animals failed to change this response of sPSP when compared with untreated GAL4 animals (Fig. 5¢).

Wse, but not Mpe, treatment rescues the impairment of mitochondrial morphology in moto-
neurons of hSOD1 mutant flies. Transmission (TEM) and scanning transmission electron microscopy
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Figure 2. Effects of Wse and Mpe on climbing activity. (a) Climbing activity of adult GAL4 flies, untreated
mutants (hSOD1) and Wse- and Mpe- treated hSOD1. The treatment was administered during the adult stage
of mutants (L™/A™) and its effect was assayed at three different age steps (I: 3-6; II: 10-15; III: 20-25 days) of
flies’ life-span. Values are average == SEM. “Indicates significant difference from Gal4 (Two-way ANOVA with
HSD post-hoc test, p < 0.05); bindicates significant difference from hSOD1 (Two-way ANOVA with HSD post-

hoc test, p < 0.05). (b) Percentages of adult Gal4, hSOD1 and Wse L~/A*- and Mpe L/A*- treated hSOD1 that
could climb unto, or above, the line drawn at 6 cm from the bottom of the tube within 10 seconds.

(STEM) analysis were performed in untreated hSOD1 flies and hSOD1 mutants treated with 0.1% w/w Wse or
Mpe as L=/A*. All flies analyzed were belonging to group II (10-15 days old) at the moment of morphologi-
cal assessment. A high number of clearly damaged mitochondria with fragmented cristae, abnormally enlarged
membranes and inhomogeneous electron transparent matrix have been observed by TEM and EM tomography
in the T1- T2 regions of the thoracic ganglia in Drosophila hSOD1 mutants®! (Fig. 6a—e and Supplementary
Video S1). Intriguingly, a similar density of damaged mitochondria has been observed in those mutants also
after treatment with Mpe (Fig. 6¢,d). On the contrary Drosophila hSOD1 mutants treated with Wse showed a
significant reduction in the number of damaged mitochondria (Fig. 6b,d) compared with untreated hSOD1 flies.
The treatment of the hSOD1 mutants with Wse was thus able to significantly decrease the number of damaged
mitochondria in T1-T2 regions of thoracic ganglia rescuing also climbing as well as muscle electrophysiological
parameters.

Discussion
In agreement with Watson et al.?! the results of the present study disclosed that the survival curves of flies over-
expressing hSOD1-GOF in motoneurons were not significantly impaired with respect to GAL4 control flies.
As discussed in the review by Casci and Pandey?! the overexpression of SOD1 in different tissues may also be
responsible of an improvement of life span thus, both the loss of expression of SOD1 and its overexpression
may be responsible in affecting the lifespan. Interestingly, administration of Wse or Mpe to hSOD1 mutant flies
resulted in differential effects also depending on the maturity stage of the flies. In particular, while both Wse and
Mpe administration resulted in a reduced lifespan when administered to flies as L*/A*, only Wse increased the
life duration of hSOD1 mutants when administered as L/A*.

Impairment in lifespan following Wse administration to hSOD1 flies as L*/A* agrees with our previous data
regarding the Wse exposure to LRRK2 PD mutants leading us to the conclusions that Wse may have, after long
term exposure or exposure at high concentrations, toxic effects'®. Furthermore, the present observation after Wse
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Figure 3. Effect of hSOD1 gene mutation and treatment with Wse or Mpe on ePSP latency and amplitude
recorded from Drosophila DLM. (a) Representative traces obtained from four different flies of the different
experimental groups in which ePSP latency is calculated as the time (ms) from stimulus application to the
peak of PSP (black arrows) and PSP peak is calculated by measuring the maximal amplitude of the response
starting from the baseline (red scatter lines). Scale bar, 20 mV/5ms. (b,c) Bar graphs represent the mean £ SEM
of PSP amplitude (mV) (b) and latency (ms) (c) recorded from flies treated with Wse and with Mpe, *P < 0.05
compared to GAL4, one-way ANOVA, followed by Bonferroni post-hoc test. N =24 (GAL4), 16 (untreated-
hSOD1), 21 (Wse-treated hSOD1) and 16 (Mpe-treated hSOD1).

administration to hSOD1 mutants as L /A" appears in agreement with the ability to prolong lifespan of LRRK2
PD mutants upon treatment as L=/A™1°. This suggests that the widely accepted anti-inflammatory properties of
Withania somnifera®® may represent the common mechanism underlying lifespan increase of hSOD1 (present
data, Fig. 1) (TS50 (untreated hSOD1) = ~20 days versus TS50 (Wse-treated hSOD1) = ~60 days) and that of
LRRK2 mutants'®.

Notably, Mpe administration to hSOD1 mutants produced opposite results with respect to our previous study
with Mpe administration to flies of another genetic model, the PINK1® PD mutants'®. In fact, administration of
Mpe to PINK1® PD mutant flies as L™/A™ resulted in a significant rescue of the lifespan, whereas its administra-
tion to L*/A" hSODI resulted in a dramatic lifespan reduction. On the other hand, when Mpe was administered
as L7/A" the extract failed to affect this parameter in both mutants. Anyway, the overall results, suggest that the
genetic and metabolic pathways of these two mutants differ significantly as do the effects of these phytotherapic
extracts, that, we recall, do not affect the lifespan of GAL4 control flies when administered as L™/A™.

Also, the observation that both extracts protect against the development of motor impairment suggests that
Wse and Mpe can have a positive impact on complex climbing behaviour, although involvement of distinct path-
ways either in terms of neuronal circuitry and metabolic machinery is still unclear. This seems in agreement also
with our previous studies with LRRK2'? and PINK1%!8 genetic models of PD in which we found that Wse and
Mpe, similarly to the present data at stage II of age, significantly ameliorated climbing behaviour.

Interestingly, both Wse and Mpe administered to flies as L~/A™ were able to protect from the climbing impair-
ment in an age-independent manner and, surprisingly, also protected group III hSOD1 mutant flies from the
age-related spontaneous impairment as suggested by the observation that we did not detect any significant dif-
ference between the dSOD1 (i.e. GAL4) and untreated hSOD1 flies. The observation that in our conditions the
motor impairment appears as early as within the first five days (group I) and remains almost constant (Fig. 2), is
at variance with what Watson et al.*! found in flies expressing WT (not overexpressed) hSOD1 which showed a
progressive loss of climbing starting at 21 days as compared with dSOD1 controls. In this respect, the difference
we found is likely imputable to differences in the expression level of hSOD1. Accordingly, Watson et al.*! reported
in Drosophila an accumulation of hSOD1 in motoneurons that increased with the age.

Electrophysiological data showed that hSOD1 over expression in motoneurons was associated with a signif-
icant increase in latency of ePSPs with a parallel and significant decrease in amplitude when compared to GAL4
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Figure 4. Effect of SOD1 gene mutation and treatment with Wse or Mpe on PSP response to “frequency
of following” recorded in Drosophila DLM. (a) Representative traces obtained from four different flies of
different experimental group in which PSPs were evoked in response to 10 stimulations at increasing train
frequency of 10 consecutive stimuli. *Indicates the detected response at 100 (top) or 200 Hz (bottom). Scale
bar 20 mV/20 ms for 100 Hz and 20 mV/10 ms for 200 Hz. (b,d) Scatter plot graphs showing the changes in
PSP amplitude following stimulation at increasing frequency (the effect at 100 Hz is highlighted in yellow). All
values are expressed as the mean + SEM of the % of failure observed in every train. In d the averaged % of failure
was plotted of GAL4, hSOD1 and hSOD1 treated with Wse. **P < 0.01 compared to GAL4, unpaired t-test.
(c,e) Scatter plot graphs showing the changes in PSP amplitude following stimulation at increasing frequency
(the effect at 100 Hz is highlighted in yellow). All values are expressed as the mean &= SEM of the % of failure
observed in every train. In e the averaged % of failure was plotted of GAL4, hSOD1 and hSOD1 treated with
Mpe. **P < 0.01 compared to GAL4, unpaired t-test.
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Figure 5. Effects of Withania somnifera extract (Wse) and Mucuna pruriens extract (Mpe) treatment on
GAL4 on ePSP latency, amplitude and response to “frequency of following” recorded in Drosophila DLM.
(a,b) Bar graphs, representing the mean = SEM of PSP amplitude (mV) (a) and latency (ms) (b) recorded
from GAL4 flies and GAL4 treated with Wse or Mpe, indicate that treatment failed to induce change of ePSP
parameter when compared with untreated GAL4 (N =24 (GAL4), 8 (Wse-treated GAL4), 7 (Mpe-treated
GAL4); (c) Bar graph representing the averaged % of failure plotted in GAL4 and GAL4 treated with Mpe or
Wse, indicate that the treatment fails to alter this parameter when compared with untreated GAL4.

animals, an effect no longer present in hSOD1 flies fed both Wse and Mpe. Conversely, neither Wse nor Mpe
affected the GAL4 electrophysiological parameters.

These data are in agreement with previous reports in which hSODI1 flies showed an impairment of synaptic
transmission that become progressively defective?. Moreover, differently from our data, Watson and colleagues?!
reported such kind of impairments only in 55 days old flies in contrast to their 10 days old WT hSOD1 flies which
showed a normal synaptic response. The differences between the present data and those of Watson et al.?! can be
attributable to the differences in the genetic background of mutants belonging to these different studies. In fact,
in this regard, it should be kept in mind that Watson and colleagues®! performed their data on WT hSOD1 or
mutation of this gene while we recorded from mutant flies in which hSOD1 was overexpressed and this may lead
to a more pronounced impairment in motor neurons, the only cells in which the mutation occur, that may appear
earlier in life than in Watson’s flies.

The lower amplitude and the higher latency of ePSP shown by hSOD1 muscle responses may be related to a
decrease in neuronal conduction and a possible related decrease in the probability of neurotransmitter release
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Figure 6. Electron microscopy. Representative TEM images of thoracic ganglia (T1-T2 regions) in Drosophila
hSOD1 untreated (a) and treated with Wse L~/A™ (b) and Mpe L~/A* (c) respectively. (d) Percentage of
damaged versus total mitochondria in thoracic ganglia (T1-T2 regions) of Drosophila hSOD1 untreated
(hSOD1, n mitochondria =464) and treated with a 0.1% solution of Mucuna (hSOD1 Mpe, n mitochondria = 524)
and Whitania (hSOD1 Wse, n mitochondria =271) respectively. *t-Student test p-value < 0.01. (e) 3D model
representing the reconstruction of a single mitochondrion in Drosophila hSOD1 thoracic ganglia (T1-T2
regions). The 3D model is set on a tomographic section. The es1 and es2 images are digitally inverted single
tomographic slices corresponding to sections es 1 and es 2 in the 3D reconstruction. Arrowheads point to
mitochondria. Asterisks point to damaged areas in the mitochondrion (see main text). Scale bars are 0.4 pm in
(a,b) and (c), and 0.2 pm in es1 and es2.

from presynaptic terminals. Our findings suggest that the effects of Wse and Mpe on the functional changes
associated with the hSOD1 over expression seem clearly connected to beneficial aspects of these treatments.
Furthermore, hSOD1 flies showed an increase in failure of PSPs after increasing frequency stimulation compared
with GALA4 flies. Even partially different from other reports?!, that showed such modification later in life, our
data are strongly consistent with climbing attitude results that show an impairment that appear earlier in life.
In addition, we found that both Wse and Mpe were effective also in reverting the changes on train frequency
responsiveness observed in hSODI flies. Interestingly, the effect of Wse on genetically-mediated impairments
on percentage of failures at increasing frequency stimulation is in agreement with our previous data on LRRK2
mutants'®. Furthermore, the results on the percentage of failures following Mpe treatment are in agreement with
the morphological observations of our previous study made with PINK18 PD mutants'® in which we observed an
increased expression of T bars. These observations point to the ability of these extracts to overall impact, perhaps
through different mechanisms, on impaired release of neurotransmitters from pre-synaptic terminals.
Locomotor impairment as well as altered muscle contraction here presented well correlate with the presence of
ahigh density of damaged mitochondria in the hSOD1 T1-T2 regions of thoracic ganglia. Boillée et al.2 by means
of in vivo studies, emphasizes the importance of the glia as well as the glia-neurons interaction in the development
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of ALS. Although on the basis of our results we cannot exclude an involvement of glia or specific glia-neuron
interactions in ALS, our EM analysis showed that mainly thoracic ganglia neurons, characterized by the presence
of T-Bars in their presynaptic terminals, showed damaged mitochondria. The damaged mitochondria at level of
presynaptic terminals may be in agreement with electrophysiological data showing that hSOD1 overexpression
is also related to an impaired postsynaptic response to high frequency stimulation of presynaptic terminals that
fired to DLM motoneurons.

In agreement with other studies®*~*® our results point to a possible link between SOD1, mitochondrial dysfunc-
tion and ALS. Intriguingly, we showed that the over-expression of the wild type hSOD1 also causes mitochondrial
alterations. Thus, not only mutation in hSODI1 but also alteration in its expression may lead to mitochondrial
dysfunction and possibly drive to ALS symptoms. Interestingly it has been shown that overexpressed mutant
SOD1 mislocalize with mitochondria affecting their functions and contributing to the degeneration of motoneu-
rons leading to ALS***. Although the proposed model is appealing, further experiments are needed to clarify the
mechanisms by which wild type hSOD1 overexpression affects mitochondria functioning. We hypothesize that
an overexpression of human SOD1 in the motoneurons could be regarded as a destabilizing solution condition?’
and mitochondria are altered as a consequence.

Treating the hSOD1 mutants with Wse was able to significantly decrease the number of damaged mitochon-
dria in T1-T2 thoracic ganglia region rescuing also climbing as well as muscle electrophysiological parame-
ters. Intriguingly, Wse exhibited a similar rescue effect on damaged mitochondria in LRRK2 loss-of-function
Drosophila model of PD*. The use of this drug as a therapy is really promising for many pathologies, but no
data are available specifically on Withania somnifera extract against ALS, even if a number of papers are present
regarding the effects of active molecules present in the extract according to the widely accepted anti-oxidant
activity (glycowithanolides sitoindosides VII-X and withaferin A)3>40-2. More recently, Patel et al.*’ reported
that Withaferin A reduces the levels of misfolded SOD1 in a mouse model of ALS. Instead, the present work
specifically used Withania somnifera and Mucuna pruriens extracts against ALS-SOD1. Moreover, the present
work indicates that Drosophila melanogaster is a powerful model of ALS, convenient because of the reproduc-
ibility, the low cost and a relatively short life-span with respect to other models. More importantly, it indicates
that this organism can be used as a model in studying phytoterapic approaches to ALS. Specifically Withania
somnifera extract presents, compared to the single active molecules above reported, different advantageous being
more safety, as it is used in Ayurvedic medicine since many centuries, cheaper as it does not need extraction
costs and easy to be administered. As already cited, Withania somnifera powder is considered very safe for values
ranging from 0.001 mg to 1000 mg per kg. of body weight, showing modest tranquilizers and hypotensive effects at
25 mg/kg*.

Additional pre-clinical studies are necessary in order to verify the efficacy of this drugs on ALS-TDP43 while
the present data strongly support the use of this extract to counteract the ALS-symptoms in humans. In this
regard, we acknowledge that clinical studies will be required in order to characterize the optimal conditions (dos-
age and duration) at which these drugs might be successfully used to counteract this terrible disease.

In this respect, the observation that the administration of Wse and Mpe to flies as L*/A* induces a further
reduction of lifespan as compared to WT controls and untreated hSOD1 indicates that these phytoterapics may
exert their effects -as a drug- following a hormesis-like dose-response curve*!, similarly to what observed in the
LRRK"P Drosophila PD mutant!, and further highlights the need to assess the proper concentration and duration
of treatment.

Unlike the Wse treatment, the Mpe one on Drosophila overexpressing hSOD1 did not rescue mitochondrial
impairment in the thoracic ganglia. This result is surprising since the same treatment well rescued climbing as well
as muscle electrophysiological parameters. Moreover, Mpe well restored mitochondrial impairment in the olfac-
tory bulbs of PD-PINK® mutants'”. These results, that need further experiments to be fully understood, suggest
that Wse and Mpe rescue mitochondrial damage probably through different molecular mechanisms. This is sug-
gested also by the significantly different quantitative composition of Mpe that includes, among others, a number
of anti-oxidant agents such as Fe?* and glutathione responsible of preventing the consequences of both hSOD1
over-expression as well as mitochondrial functional defects due to silencing of PINK1'8. In addition several evi-
dences suggest that a common path in different neurodegenerative desease is the increase in the formation of
inflammatory markers such as pro-inflammatory cytokines including interleukin-6 and tumor necrosis factor-o
, nitric oxide and reactive oxygen species (ROS) (see D’Ambrosi et al.*® for review) contributing to mitochondrial
function and inducing cell death. In this regard, it has widely reported that Wse show a potent inhibitory effect on
inflammatory markers such as ROS in a mouse model of lupus*®*”. Interestingly Wse reduced rotenone-induced
oxidative impairment and mitochondrial respiratory chain enzymes and such impairments were responsible for
reduced locomotor deficits and lethality in a Drosophila melanogaster model of Parkinson induced by rotenone,
a naturally occurring common pesticide which specifically inhibits mitochondrial complex-I activity*®. We here
speculate that Wse as well as Mpe may affect the activity of mitochondrial complex-I inhibiting the negative
action induced by SOD1 mutation onto mitochondrial function.

Taken together, our results demonstrate that an overexpression of wild hSOD1, in Drosophila melanogaster
flies, is able to alter the motor coordination of mutant animals, an effect that is already present in young animals
and remains even in adulthood. The positive effect of Wise as well as Mpe, results in an improved performance
(climbing) and in a recover of normal electrophysiological function of locomotor system. Moreover, on the basis
of our results it seems clear that both Parkinson Disease (PD) and Amyotrophic Lateral Sclerosis share mitochon-
drial dysfunction even if they differ in both genetic and metabolic pathways. Finally, given the role of inflamma-
tion in the development of ALS, the known anti-inflammatory properties of these extracts and the viability of
their clinical use, these results suggest that the application of Wse and, to lesser extent, of Mpe might represent a
valuable pharmacological strategy to counteract the progression of ALS and related symptoms.

33-38
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Methods

Flies. We used the GAL4-UAS binary system*** to over-express human SOD1 (hSOD1) specifically in moto-
neuron cells of D. melanogaster. For these experiments, we crossed GAL4D42 (dSOD1, #42737; from now on
reported as GAL4) with UAS-hSOD1 (hSOD1, #33656, from Bloomington Stock Center; Fly Base: http://flybase.
bio.indiana.edu) flies. After emergence from pupae, GAL4 (isogenic controls) and hSOD1 mutant male flies were
reared on a standard cornmeal-yeast-agar medium in controlled environmental conditions (24-25°C; 60% rela-
tive humidity; light/dark = 12/12 hours).

In detail, a part of GAL4 and hSOD1 mutants, four groups of mutant flies were reared on a standard medium
supplemented with Withania somnifera (Wse) or Mucuna pruriens (Mpe) extracts (kindly provided by Natural
Remedies Pvt. Ltd., Bangalore, India). In agreement with our previous studies'®® hSOD1 mutants were sup-
plied with Wse or Mpe at 0.1% w/w concentrations both as larvae and adults (L*/A™) or as adults only (L™/A™").
Moreover, lifespan of GAL4 Wse- and Mpe-treated flies as L™/A™" was analysed.

The effects of Wse or Mpe were assayed at different age steps (I: 3-6; II: 10-15; III: 20-25 days old). The exper-
iments on life span, using different time of administration at the same concentrations of Wse or Mpe (see below
in Survival curves) provided the basis for selecting the time of drug administration at which conduct the behav-
ioural, electrophysiological and morphological experiments. In particular, based on lifespan results, behavioural,
electrophysiological and transmission electron microscopy (TEM) were restricted to group II flies after 0.1% w/w
Wse or Mpe administration as L™/A*. Standard genetic procedures were used during the study.

Survival curves.  Asin Drosophila mutants for Parkinson’s disease both Wse and Mpe showed effects depend-
ent on the duration of the treatment; Wse or Mpe standardized methanolic extracts were administered in two
different modalities: as adults (L7/A™) only or as larvae and adults (L7/A™) with the aim of selecting the opti-
mal Mpe and Wse administration time. In detail, flies were grown on standard diet supplemented with 0.1%
w/w concentrations of Wse or Mpe. Cohorts of 60 flies (10 flies/tube) from each experimental group (i.e. GAL4,
Wse-untreated, Wse-treated hSOD1, Mpe-untreated and Mpe-treated hSOD1), were monitored every 2 days for
their survival. Mortality was analyzed using Kaplan-Meier survival curves and the statistical comparisons were
made with a Gehan-Breslow-Wilcoxon test. All experiments were done in triplicate. All experiments were done
in triplicate, except for Wse- and Mpe-treated Gal4 flies, that were done in duplicate.

Climbing assay. The climbing assay (negative geotaxis assay) was used to assess locomotor ability both in
GALA4 control flies and in the hSOD1 mutant ones as already reported by Liu et al.*!, Poddighe et al.'”!® and De
Rose et al.”.

Climbing data were obtained from different age groups (I: 3-6; II: 10-15; III: 20-25 days old) of
untreated-GAL4, Wse-untreated, Wse-treated, Mpe-treated and Mpe-untreated hSOD1 mutants. Cohorts
of 60 flies from each experimental group were subjected to the assay. Flies were placed individually in a
vertically-positioned plastic tube (length 10 cm; diameter 1.5 cm) and tapped to the bottom. Climbing time (sec-
onds) was recorded upon crossing a line drawn at 6 cm from the bottom. The number of flies that could climb
unto, or above, this line within 10 seconds was recorded and expressed as percentage of total flies. Data were
expressed as average & standard error of the mean (SEM) from three experiment replications. Statistically signif-
icant differences (p < 0.05) were analyzed between GAL4 vs. hSOD1 and between untreated-hSOD1 vs. treated
ones by means of the one-way ANOVA followed by HSD post-hoc test.

Electrophysiological recordings. At the time of experiments, flies from the different experimental groups
at age step II (10-15 days) were anesthetized by using CO2 and tightly anchored to a wax support with ventral
side down, as previously reported®, and visualized under a stereomicroscope. In order to activate the GFS of the
fly, two tungsten stimulating electrodes, connected to a stimulator (Master 8, A.M.P., Jerusalem, IL, USA) trig-
gered by a stimulus isolation unit (DS2A, Digitimer Ltd., Hertfordshire UK), were placed into both eyes of the fly.
Stimulus intensity was increased until the postsynaptic potential response was observed and maximal stimulation
intensity was not greater than 10 V. Moreover the range of stimulation was very wide (the positive artefact, that
represent the stimulation intensity, is perceptible before every single) and no correlation between stimulation
intensity and type of animal tested was observed (data not shown). A ground tungsten wire was placed into
the fly abdomen. A borosilicate recording electrode, shaped by a horizontal puller (P97, Fleming Brown, Sutter
Instruments, Novato, CA, USA) with a resistance of 4-5MQ when filled with 3 M KCI, was placed into the right
or left backside of the fly along the 45a and 45b fibres of the Dorsal Longitudinal Muscle fibres (DLMs). Evoked
post-synaptic potentials (PSPs) were recorded with an Axopatch 2-B amplifier (Axon Instruments, Foster City,
CA), filtered at 0.5kHz and digitized at 1 kHz. PSPs were recorded in bridge mode, measured using peak and
event detection software pPCLAMP 8.2 (Axon Instruments, Foster City, CA), and analyzed off-line by pCLAMP fit
software (Axon Instruments, Foster City, CA). All recordings were obtained from at least 10 different flies belong-
ing to each experimental group. Experiments were blind to the treatment. Electrophysiological experiments were
performed by applying a protocol consisting in a single GFS stimulation, delivered every 20s, followed by PSP
recording. The “frequency of following” was determined by delivering trains of 10 stimuli at increasing frequen-
cies (from 10 to 200 Hz) and the failures, as the percentage of lacking responses at each train, were calculated. As
previously published! we also evaluated the amplitude (peak of the PSP expressed in mV) as well as the latency
(interval between the stimulating artifact and the time at PSP peak, expressed in ms) of the first PSP evoked by the
10 Hz stimulation train. Data are expressed as mean +S.E.M. and analyzed by one or two-way ANOVAs followed
by Bonferroni’s post-hoc tests.

Electron microscopy analysis. Untreated hSOD1, Wse- and Mpe-treated hSOD1 mutants were anesthe-
tized using CO2 and carefully decapitated. Once rapidly removed, the thoracic ganglia were fixed in a mixture of
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2% glutaraldehyde and 2% paraformaldehyde in 0.1 M cacodylate buffer, washed several times in the same buffer,
post-fixed in 1% osmium tetroxide in distilled water for 2 hours, and stained overnight at 4 °C in an aqueous 0.5%
uranyl acetate solution. After several washes in distilled water, the samples were dehydrated in a graded ethanol
series, and embedded in SPURR resin. Semi-thin coronal sections of the whole ganglion were cut with a Leica EM
UC6 ultramicrotome, stained with toluidine blue and observed with a Leica DM2700 P light microscope. Sections
of about 70 nm corresponding to portions of the thoracic ganglia were cut with a diamond knife on a Leica EM
UC6 ultramicrotome. Transmission electron microscopy (TEM) images were collected with a FEI Tecnai G2 F20
(FEI Company, The Netherlands) and a Jeol JEM 1011 (Jeol, Japan) electron microscopes and recorded with a 1
and 2 Mp charge-coupled device (CCD) camera (Gatan BM Ultrascan and Gatan Orius SC100, respectively). The
number of damaged mitochondria within the thoracic ganglia T1 and T2 regions (expressed as percentage of the
total number of mitochondria/sampled area) was evaluated in untreated hSOD1, Wse-and-Mpe-treated hSOD1
mutants. More than 2300 mitochondria were randomly sampled on 227 non-overlapping micrographs at a final
magnification of 6000x, corresponding to a total sampled area of more than 2800 pm?. Damaged mitochondria
were recognized for the presence of swollen external membrane, clearly fragmented cristae and inhomogene-
ous electron transparent mitochondrial matrix. The mean differences were tested using a two-tailed t-test and a
p <0.01 level was considered statistically significant. EM tomography was performed in scanning TEM (STEM)
using a high angular annular dark field (HAADF) detector on 400 nm sections of Drosophila hSOD1 the thoracic
ganglia T1-T2 region. The tilt series were acquired from =+ 65 degree tilt range using a Saxton tilt scheme with
3-degree increment at 0 tilt. A final magnification of 28000x was used, corresponding to a pixel size of 3.6 nm.
Computation of tomograms was done with the IMOD (version 4.8.40) software package®. Isosurface based seg-
mentation and three-dimensional visualization on unbinned and unfiltered tomograms were performed using the
Amira software package (FEI Visualization Science Group, Bordeaux, France).
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