49 research outputs found

    Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy.

    Get PDF
    PURPOSE: Drug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new methodologies able to shorten the period of determining a rationale pharmacologic treatment. Metabolomics could provide such a tool to investigate possible markers of drug resistance in subjects with epilepsy. METHODS: Blood samples were collected from (1) controls (C) (n = 35), (2) patients with epilepsy "responder" (R) (n = 18), and (3) patients with epilepsy "non-responder" (NR) (n = 17) to the drug therapy. The samples were analyzed using nuclear magnetic resonance spectroscopy, followed by multivariate statistical analysis. KEY FINDINGS: A different metabolic profile based on metabolomics analysis of the serum was observed between C and patients with epilepsy and also between R and NR patients. It was possible to identify the discriminant metabolites for the three classes under investigation. Serum from patients with epilepsy were characterized by increased levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoacetate, acetone, acetate, choline, alanine, glutamate, scyllo-inositol (C  R > NR). SIGNIFICANCE: In conclusion, metabolomics may represent an important tool for discovery of differences between subjects affected by epilepsy responding or resistant to therapies and for the study of its pathophysiology, optimizing the therapeutic resources and the quality of life of patients

    KniMet: a pipeline for the processing of chromatography-mass spectrometry metabolomics data.

    Get PDF
    INTRODUCTION: Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow. OBJECTIVES: Merge in the same platform the steps required for metabolomics data processing. METHODS: KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform. RESULTS: The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation. CONCLUSION: KniMet provides the user with a local, modular and customizable workflow for the processing of both GC-MS and LC-MS open profiling data

    Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing-Remitting and Primary Progressive Multiple Sclerosis

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic immunemediated disease of the central nervous system with a highly variable clinical presentation and disease progression. In this study, we investigate the metabolomics profile of patients affected by relapsing-remitting MS (RRMS)and primary progressive MS (PPMS), in order to find potential biomarkers to distinguish between the two forms. Methods: Cerebrospinal Fluid CSF and blood samples of 34 patients (RRMS n = 22, PPMS n = 12) were collected. Nuclear magnetic resonance (H-1-NMR) and mass spectrometry (coupled with a gas chromatography and liquid chromatography) were used as analytical techniques. Subsequently, a multivariate statistical analysis was performed; the resulting significant variables underwent U-Mann-Whitney test and correction for multiple comparisons. Receiver Operating Characteristic ROC curves were built and the pathways analysis was conducted. Results: The analysis of the serum and the CSF of the two classes, allowed the identification of several altered metabolites (lipids, biogenic amines, and amino acids). The pathways analysis indicated the following pathways were affected: Glutathione metabolism, nitrogen metabolism, glutamine-glutamate metabolism, arginine-ornithine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis etc. Conclusion: The analysis allowed the identification of a set of metabolites able to classify RRMS and PPMS patients, each of whom express different patterns of metabolites in the two biofluids

    Drosophila mutant model of Parkinson's disease revealed an unexpected olfactory performance: Morphofunctional evidences

    Get PDF
    Parkinson's disease (PD) is one of the most common neurodegenerative diseases characterized by the clinical triad: tremor, akinesia, and rigidity. Several studies have suggested that PD patients show disturbances in olfaction as one of the earliest, nonspecific nonmotor symptoms of disease onset. We sought to use the fruit fly Drosophila melanogaster as a model organism to explore olfactory function in LRRK loss-of-function mutants, which was previously demonstrated to be a useful model for PD. Surprisingly, our results showed that the LRRK mutant, compared to the wild flies, presents a dramatic increase in the amplitude of the electroantennogram responses and this is coupled with a higher number of olfactory sensilla. In spite of the above reported results, the behavioural response to olfactory stimuli in mutant flies is impaired compared to that obtained in wild type flies. Thus, behaviour modifications and morphofunctional changes in the olfaction of LRRK loss-of-function mutants might be used as an index to explore the progression of parkinsonism in this specific model, also with the aim of studying and developing new treatment

    Impaired sense of smell in a Drosophila Parkinson's model.

    Get PDF
    Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by the clinical triad: tremor, akinesia and rigidity. Several studies have suggested that PD patients show disturbances in olfaction at the earliest onset of the disease. The fruit fly Drosophila melanogaster 32 is becoming a powerful model organism to study neurodegenerative diseases. We sought to use this system to explore olfactory dysfunction, if any, in PINK1 mutants, which is a model for PD. PINK1 mutants display many important diagnostic symptoms of the disease such as akinetic motor behavior. In the present study, we describe for the first time, to the best of our knowledge, neurophysiological and neuroanatomical results concerning the olfactory function in PINK1 mutant flies. Electroantennograms were recorded in response to synthetic and natural volatiles (essential oils) from groups of PINK1 mutant adults at three different time points in their life cycle: one from 3-5 day-old flies, from 15-20 and from 27-30 days. The results obtained were compared with the same age-groups of wild type flies. We found that mutant adults showed a decrease in the olfactory response to 1-hexanol, α-pinene and essential oil volatiles. This olfactory response in mutant adults decreased even more as the flies aged. Immunohistological analysis of the antennal lobes in these mutants revealed structural abnormalities, especially in the expression of Bruchpilot protein, a marker for synaptic active zones. The combination of electrophysiological and morphological results suggests that the altered synaptic organization may be due to a neurodegenerative process. Our results indicate that this model can be used as a tool for understanding PD pathogensis and pathophysiology. These results help to explore the potential of using olfaction as a means of monitoring PD progression and developing new treatments

    Functional and morphological correlates in the drosophila LRRK2 loss-of-function model of Parkinson's disease: drug effects of Withania somnifera (Dunal) administration

    Get PDF
    The common fruit fly Drosophila melanogaster (Dm) is a simple animal species that contributed significantly to the development of neurobiology whose leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain represent a very interesting tool to look into physiopathology of Parkinson's disease (PD). Accordingly, LRRK2 Dm have also the potential to contribute to reveal innovative therapeutic approaches to its treatment. Withania somnifera Dunal, a plant that grows spontaneously also in Mediterranean regions, is known in folk medicine for its anti-inflammatory and protective properties against neurodegeneration. The aim of this study was to evaluate the neuroprotective effects of its standardized root methanolic extract (Wse) on the LRRK2 loss-of-function Dm model of PD. To this end mutant and wild type (WT) flies were administered Wse, through diet, at different concentrations as larvae and adults (L+/A+) or as adults (L-/A+) only. LRRK2 mutants have a significantly reduced lifespan and compromised motor function and mitochondrial morphology compared toWT flies 1% Wse-enriched diet, administered to Dm LRRK2 as L-/A+and improved a) locomotor activity b) muscle electrophysiological response to stimuli and also c) protected against mitochondria degeneration. In contrast, the administration of Wse to Dm LRRK2 as L+/A+, no matter at which concentration, worsened lifespan and determined the appearance of increased endosomal activity in the thoracic ganglia. These results, while confirming that the LRRK2 loss-of-function in the WD40 domain represents a valid model of PD, reveal that under appropriate concentrations Wse can be usefully employed to counteract some deficits associated with the disease. However, a careful assessment of the risks, likely related to the impaired endosomal activity, is require

    Sardinia Array Demonstrator: Instrument Overview and Status

    Get PDF
    In the framework of the Square Kilometer Array (SKA) project, the Italian Institute for Astrophysics (INAF) has addressed several efforts in the design and prototyping of aperture arrays for low-frequency radio astronomical research. The Sardinia Array Demonstrator (SAD) is a national project aimed to develop know-how in this area and to test different architectural technologies and calibration algorithms. SAD consists of 128 prototypical dual-polarized Vivaldi antennas designed to operate at radio frequencies below 650 MHz. The antennas will be deployed at the Sardinia Radio Telescope’s site with a versatile approach able to provide two different array configurations: (i) all antennas grouped in one large station or (ii) spread among a core plus few satellite stations. This paper provides an overview of the SAD project from an instrumental point of view, and illustrates its status after 2 years from its start

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Sensilla on the antennal funiculus of the blow fly, Protophormia terraenovae (Diptera: Calliphoridae)

    No full text
    The morphology of the antennal funiculus and the external morphological characteristics and distribution of sensilla of blow fly, Protophormia terraenovae, have been studied using light and scanning electron microscopy. Cross section of the funiculus is roughly triangular in shape, with an anterior-medial, anterior-lateral, and posterior surface. The latter presents some large-size pits on restricted lateral and median areas of the proximal funiculus, and several smaller-size ones close to the pedicel–funiculus joint. The entire surface of the antennal sub-segment appears densely populated by microtrichia and is inhabited by seven types of sensilla: one trichoid, two basiconic, one auriculate, one coeloconic, and two basiconic-like pit sensilla. Trichoid, basiconic, auriculate and basiconic-like types display a multiporous wall, a feature characteristic of insect olfactory sensilla. It remains to be verified whether or not the coeloconic structure type has wall pores. The most abundant sensilla are the trichoid ones, which are followed by the basiconic, coeloconic and auriculate types in a decreasing density order. The basiconic-like pit sensilla are present only on the posterior funicular surface, unlike the remaining ones which populate the entire sub-segment. The blow fly’ funiculus displays a significant, even though moderate sexual dimorphism, the female sub-segment being bigger and presenting a higher number of trichoid and auriculate sensilla. The presence of multiple wall pores in most of sensilla types implies an olfactory modality for sensory neurons they accomodate, thus indicating that the blow fly’ funiculus is a plain olfactory organ
    corecore