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Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by the clinical triad: tremor,
akinesia and rigidity. Several studies have suggested that PD patients show disturbances in olfaction at the earliest onset of
the disease. The fruit fly Drosophila melanogaster is becoming a powerful model organism to study neurodegenerative
diseases. We sought to use this system to explore olfactory dysfunction, if any, in PINK1 mutants, which is a model for PD.
PINK1 mutants display many important diagnostic symptoms of the disease such as akinetic motor behavior. In the present
study, we describe for the first time, to the best of our knowledge, neurophysiological and neuroanatomical results
concerning the olfactory function in PINK1 mutant flies. Electroantennograms were recorded in response to synthetic and
natural volatiles (essential oils) from groups of PINK1 mutant adults at three different time points in their life cycle: one from
3–5 day-old flies, from 15–20 and from 27–30 days. The results obtained were compared with the same age-groups of wild
type flies. We found that mutant adults showed a decrease in the olfactory response to 1-hexanol, a-pinene and essential oil
volatiles. This olfactory response in mutant adults decreased even more as the flies aged. Immunohistological analysis of the
antennal lobes in these mutants revealed structural abnormalities, especially in the expression of Bruchpilot protein, a
marker for synaptic active zones. The combination of electrophysiological and morphological results suggests that the
altered synaptic organization may be due to a neurodegenerative process. Our results indicate that this model can be used
as a tool for understanding PD pathogensis and pathophysiology. These results help to explore the potential of using
olfaction as a means of monitoring PD progression and developing new treatments.
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Introduction

Parkinson’s disease (PD) represents one of the most common

neurodegenerative disorders and is usually described by the overt

clinical motor triad: tremor, bradykinesia and rigidity. However,

previous studies have demonstrated that several non-motor

symptoms may precede the onset of motor impairment [1] [2].

Of these symptoms, a decreased olfactory function in PD is a

common finding, which likely occurs early in the disease process

[3]. Indeed, although under-detected in clinical practice, deficits in

olfactory function may precede the onset of motor symptoms by

approximately 4 years [4] [5]. According to neuropathological

studies in humans [6], it is now clear that the PD-related

intraneuronal pathology evolves through at least six progressive

steps, which include the medulla oblongata and olfactory bulb to

the midbrain, diencephalic nuclei and neocortex. In this context, it

must be emphasized that the substantia nigra, whose impairment

plays a key role in the motor impairment, is involved only in a later

step in PD, while typical PD-related alterations can initially be

observed in the anterior olfactory nucleus.

Recently, several genetic mutations have been described as

important etiologic factors in the degeneration of dopaminergic

neurons in the substantia nigra. In particular, mutations in the

PTEN-induced putative kinase 1 (PINK1) gene [7] in humans are

known to cause hereditary early-onset PD. While previous studies

using a small cohort of PD patients with PINK1 mutations showed

deficits in odor identification and discrimination, the pathophys-

iology of olfactory dysfunction remains largely obscure [8] [9]

[10].

Over the years the fruit fly Drosophila has been considered

particularly useful as a model system in studying neuronal

dysfunction in general, and investigating the early stages and

molecular aspects of neurodegenerative diseases in particular.

Although models can only heuristically fulfil reductive reproduc-

tions of human diseases, many of the existing PD models in

Drosophila exhibit key features of the disease and have provided

insights into PD pathogenesis. Among them, PINK1 mutants

provide capital clues regarding the pathogenetic molecular basis of

PD because juvenile sporadic forms of PD share certain common

pathways with that of PINK1-linked PD. PINK1 mutants exhibit
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indirect flight muscle and dopaminergic neuronal degeneration

accompanied by locomotor defects. This gene encodes a putative

serine/threonine kinase with a mitochondrial targeting sequence

[7], while a recent study demonstrates that the kinase domain faces

the cytosol, where its physiological substrates may reside [11].

Olfactory dysfunctions are a common feature in PINK1

Parkinsonism and consist typically of defective odor identification

and discrimination both in human [8] [9] [10] and in animal PD

models [12]. The study of in vivo models of PINK1 mutants may

represents an effective approach in evaluating olfactory alterations.

Moreover, PINK1 is an autosomal recessive gene associated with

early onset of PD [7] and may represent an effective paradigm for

detecting the development of the disease features rather than other

genetic late onset models showing reduced penetrance in humans,

as in the case of LRRK2 mutations [13].

As the Drosophila PINK1 gene encodes a protein that contains the

same domains as its human counterpart, we sought to study

alterations in olfactory functions in Drosophila PINK1 mutants. In

particular, we undertook to correlate early stages of clinical

features of PD in human patients to our fly model.

In this study, we describe neurophysiological and neuroana-

tomical results concerning the olfactory function in PINK1B9

mutant flies. We combined electrophysiological and morpholog-

ical techniques and demonstrate that these flies show olfactory

deficits as well as defective antennal lobes. The results show that

the PINK1B9 mutant adults have a lowered olfactory responsive-

ness to stimuli from the majority of the odors tested and an

impairment of the integrity of presynaptic active zones in the

olfactory areas in the CNS.

Materials and Methods

Fly Strains, Genetics
For the experiments we used adult males of the following

Drosophila melanogaster strains: wild type and PINK1B9 (from

Bloomington stock center). After emergence from pupae, males

of both strains were separated. Flies were reared on a standard

cornmeal–yeast–agar medium in controlled environmental condi-

tions (24–25uC; 60% RH; L:D = 12:12). Standard genetic

procedures were used during the study.

Lifespan Determination
Males of wild type (n = 115) and PINK1B9 (n = 310) were

maintained separately. Five flies per vial were kept for analysis and

were transferred every day to new tubes with fresh medium. Their

lifespan was measured by counting the number of dead animals

and expressed as survival rate in %. Statistical differences of

survival curves were analyzed using the Kaplan–Meier test.

Electrophysiology
In vivo electroantennogram recordings (EAG) were performed as

described previously [14] [15]. Briefly, live adult Drosophila in the

age ranges of 3- to 5 (group I), 15- to 20 (group II) and 27- to 30

days (group III) were singly inserted in a truncated pipette with the

antennae protruding from the narrow end of the tip. The

preparation was fixed with dental wax on a microscope slide

and positioned under the viewer of an Olympus BX51WI light

microscope (Olympus, Tokyo, Japan). Glass capillaries with a

silver wire were filled with a conductive 0.15 M NaCl solution.

The recording glass electrode was gently positioned on the tip of

the antennal funiculus while the reference electrode was pierced

ipsilaterally through the compound eye. The EAG signal was

amplified with an AC/CD probe and then acquired with an

IDAC-4 interface board (Syntech, Hilversum NL). A charcoal

purified and humidified airflow was constantly blown over the

antennae (speed 0.5 m/s), via a glass tube, placed approximately

1 cm from the antenna. The tip of a Pasteur pipette containing an

odor-loaded filter paper (5 mm625 mm) was inserted into a small

hole in the glass tube. Odor stimulation was administered by

injecting a puff of purified air (0.5 s at 10 mL/s airflow) through

the pipette using the stimulus delivery controller (Syntech). Odor

stimuli were prepared in increasing concentrations (0.1, 1 and

10% in volume) diluted in hexane. One mL of a stimulating

solution was loaded on the filter paper. Odor stimuli were

randomly applied, allowing a 3-min interval between successive

stimulations to avoid receptor adaptation. Each series started and

ended with a control stimulation (pure air) followed by a blank

(solvent).

Odor stimuli, 1-hexanol, isoamyl acetate [16] and ethyl 3-

hydroxybutyrate [17] were chosen from among synthetic chem-

icals according to their well-known stimulant activity in D.

melanogaster and between essential oils extracted from Mediterra-

nean plants with established antioxidant and anti-inflammatory

effects: Rosemary (RM) [18] [19], Lentisk (LT) [20] and Myrtle

(MT) [21]. The essential oils as stimuli were tested to determine

the effects of their properties on our model. Among the selected

chemicals, a-pinene was also chosen because of its high

concentration of essential oil blends [22] [23] [24]. Recordings

were made in 15 specimens for each strain and age-range group.

Mean values of EAG amplitude were calculated and then analyzed

by comparing the results obtained in PINK1B9 flies with the age-

matched wild type (WT) control group. The significance of

differences was tested with a two-way ANOVA (post hoc test Least

Significance Difference LSD) with a threshold level of statistical

significance set at P,0.05. EAG results are represented in

histograms with means values 6 SEM.

Immunohistochemistry
We used a monoclonal antibody against Bruchpilot nc82 tolabel

the antennal lobes (ALs), the olfactory structures in the brain

homologous to the olfactory bulbs in mammals. The nc82 staining

is routinely used to delineate the glomeruli in the fruit fly [25] [26]

and diptera in general [27] because of its restricted labeling of

synapses within the neuropil. We obtained the best results using a

modified protocol by Seki et al. [26]. Whole heads of both WT

and PINK1B9 mutant (age-range group I) were fixed with 4%

paraformaldehyde in phosphate-buffered saline with addition of

0.25% Triton X (PBST, pH 7.2) for 3 hours at room temperature.

Brains were then dissected out, washed 3 times for 20 min in

PBST and then placed in a 5% normal goat serum (NGS) blocking

solution in PBST for 1 hour at room temperature. The three

20 min washes were repeated before incubating brains in a mouse

anti-nc82 (Hybridoma, University of Iowa, Iowa, IA, USA)

Figure 1. Lifespan in wild type and PINKB9 mutant adults. The
graph shows the survival rate observed in wild type and PINK1B9

mutants. PINK1B9 had a reduced lifespan compared to WT.PINK1B9 flies
started to die dramatically at the 15th days after eclosion with 50% of
flies being dead after 30 days (P,0.0001).
doi:10.1371/journal.pone.0073156.g001
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antibody (1:30 in PBST-NGS). After washes, brains were

incubated in the secondary antibody coupled with Alexa 633

(Molecular Probes, Carlsbad, CA, USA) diluted 1:200 in PBST-

NGS. Each incubation lasted 48 hours at 4uC. After removing the

PBST, brains were mounted on a standard microscope slide in a

Vectashield Hard set medium, using a spacer ring (Secure-Seal

imaging spacers, Sigma Aldrich, St. Louis, MO, USA) to protect

them from pressure by the coverslip. To exclude autoflorescence of

the preparations, a blank was also prepared following the same

staining procedure and timing but avoiding the primary antibody.

Confocal Microscopy
Preparations were viewed using a Leica TCS SP5 confocal

microscope equipped with a 406 APO PLAN oil immersion

objective. Labeled structures with Alexafluor 633 were excited

with a supercontinuum white light laser at 631 nm and

fluorescence was detected at a range of 640–710 nm. Ten

specimens for both PINK1B9 and WT were scanned to obtain

stacks of 25–33 confocal images. All fly brains were scanned using

these defined confocal settings consisting of identical detector gain,

amplifier gain, amplifier offset, pinhole diameter, excitation (laser

power), scan mode and speed (line scan) and frame size.

Image Processing
Image analysis was performed on a standard Windows XP

platform using a free version of Image J and Imaris 7.0 (Bitplane

AG, Zurich, Switzerland). The volume of individual AL was

rendered and measured. Each stack of images was binarized and a

standard threshold was established on the blank preparation. A

‘‘region of interest’’ (ROI) was demarcated by hand in each optical

Figure 2. Electroantennogram responses in wild type and PINK1B9 mutants. Dose-response relationships for olfactory stimulations in WT
and PINK1B9 adult flies and their differences in signal amplitude. Histograms in A and D show the EAG results in flies from Group I (age range from 3 to
6 days), from Group II (age range from 15 to 20 days) in B and E and from Group III (age range from 27 to 30) in C and F. Values shown are mean 6
S.E.M. of the EAG amplitude. Stimuli are dilutions of essential oils (rosemary, RM; lentisk, LT; myrtle, MT) and synthetic compounds (a-pinene, ap;
hexanol, hex; isoamyl acetate, iso; ethyl 3-hydroxybutyrate, e3OH) administered in a 3-step dose from 0.1 to 10% in hexane. EAGs obtained in WT and
PINK1B9 displayed strong similarities in the dose-response to stimuli; statistically significant differences were observed between WT and the mutant
strains (* significantly different from its previous concentration; ** significantly different from its matching stimulus; P,0.05). In G, representative EAG
tracings recorded in WT (upper) and PINK1B9 (lower) in response to olfactory stimulation with rosemary oil (RM) administered in increasing
concentrations. The sample tracings show that the amplitude of the depolarization in the baseline is clearly higher in WT than in PINK1B9.
doi:10.1371/journal.pone.0073156.g002
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section to encircle the entire surface of each AL, from top to

bottom, to enclose its entirety. The grey-scale value, given as an

arbitrary unit (pixels/cm2), was measured in each ROI to evaluate

staining intensity. Mean values of the results obtained in PINK1B9

and WT were then compared and statistical significance was

evaluated with a one-way ANOVA (P,0.05).

Western Blot Analysis
Four samples of eight heads of both wild type and PINK1B9 (age

range group I) were homogenized in 20 mL of 56Laemmli buffer

and incubated for 5 min at 95uC before fractionation by sodium

dodecyl sulfate–polyacrylamide gel electrophoresis on 8% minigels

(Mini Protean II; Bio-Rad, Hercules, CA). The separated proteins

were transferred to a polyvinylidene difluoride membrane (Bio-

Rad), 100 V for 1 h (transfer buffer: Trizma-base 190 mM,

Glycine 25 mM, Methanol 20%, v/v) and subjected to immuno-

blot analysis with mouse monoclonal antibodies to nc82 (1:100

dilution). The membrane was incubated with primary antibodies

overnight at 4uC, and immune complexes were detected with

horseradish peroxidase–conjugated secondary antibodies and

chemiluminescence reagents (ECL, Amersham Biosciences). The

amount of bruchpilot protein was quantified by analysis of the

corresponding bands on the autoradiogram with a densitometer

(Geliance, Perkin Elmer). Data were normalized by dividing the

optical density of the bands corresponding to Bruchpilot protein

by that of the band for a-Tubulin (loading control), which was

revealed by reprobing the membrane with rabbit monoclonal

antibodies to Tubulin. Mean values of the results obtained in

PINK1B9 and WT were then compared and statistical significance

was evaluated with a one-way ANOVA (P,0.05).

Transmission Electron Microscopy
WT and PINK1B9 Drosophila (age range group I) were

anesthetized with carbon dioxide and carefully decapitated. Brains

were rapidly dissected out and fixed in a mixture of 2%

glutaraldehyde and 2% paraformaldehyde in 0.1 M cacodylate

buffer. Brains were then washed several times in the same buffer,

post-fixed in 1% osmium tetroxide in H2O for 2 h and stained

overnight at 4uC in an aqueous 0.5% uranyl acetate solution.

Samples were finally washed several times in distilled water,

dehydrated in a graded ethanol series and then embedded in

SPURR resin.

To underline the ALs, brains were sliced into semi-thin coronal

sections (,0.5 mm) with a Leica EM UC6 ultramicrotome and

then stained with toluidine blue and observed with a Leica

DM2700 P light microscope. Sections of about 70 nm corre-

sponding to the portions of the ALs were cut with a diamond knife

on a Leica EM UC6 ultramicrotome. Images were obtained with a

Jeol JEM 1011 electron microscope working at an acceleration

voltage of 100 kV and acquired with an 11 Mp charge-coupled

device camera (Gatan Orius SC100). Preparations were observed

and the percentage of presynaptic boutons without mitochondria

in both WT and PINK1B9 was assessed. A total of 104 ALs

micrographs were randomly sampled and observed for more than

100 synapses analyzed. Data were analyzed with Origin 8 software

(OriginLab Co., Northampton, MA, USA). Mean values of the

results obtained in WT and in mutants were compared and

statistically evaluated with an ‘‘t’’ test. The threshold level of

statistical significance was set at p,0.01.

Behavior
Free-walking bioassays were performed following the experi-

mental procedures used by Dekker et al [28]. Briefly, males of WT

Figure 3. The antennal lobes reveal abnormalities in PINK1B9 mutants. ALs were stained for the expression of Bruchpilot protein. Panel A:
Confocal micrographs of a frontal view of a couple of ALs (indicated by the arrow heads), with their well-defined glomeruli in WT and the mutant
(Scale bar = 50 mm). B,C: The volume rendering for the monoclonal nc82 antibody-stained AL as seen from a frontal view in a WT (B) and in a PINK1B9

mutant (C) (scale bars = 30 mm). Ten specimens in the age range of 3–10 days for each strain were analyzed; the volumes measured were averaged
and the statistical differences evaluated. Mean values 6 S.E. are reported in C: no significant difference was detected (P.0.05). E,F: Higher
magnification photomicrographs of a single AL in WT and PINK1B9 mutant respectively (scale bars = 20 mm). The latter reproducibly displays a less
intensive staining and the glomeruli are not as clearly defined as in the WT. The gray scale value, taken as the index of intensity, was measured on ALs
from binarized stacks of images (n = 10 for each strain). Mean values 6 S.E. for both WT and PINK1B9 mutants are shown in G. Statistical evaluation of
the data shows that the staining intensity in PINK1B9 is significantly lower compared to WT; (*significantly different from its matching value; P,0.05).
doi:10.1371/journal.pone.0073156.g003
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and PINK1B9 (age range group II) were given the opportunity to

choose between vials with water with or without odor. Two 4 mL

glass vials were placed symmetrically and equally spaced in a large

petridish (the arena) and then fitted with truncated pipette tips.

The vials were filled with 300 mL of water with 0.25% Triton X

with or without the odorant. The odor chosen to trap the flies was

isoamyl acetate at the dilution of 0.1%. The dehydration of flies

was prevented by placing a cotton ball with 3 mL of water in the

arenas. Flies were starved for 8 hr prior to starting the

experiments. The assays were performed in controlled environ-

mental conditions and lasted 18 hr. The attraction index (AI) was

calculated as follows: (T–C)/(T+C+NR–D), in which T is the

number of flies in the treatment, C the number in the control, NR

the number remaining in the arena and D the number of dead flies

in the arena (n = 9 of bioassay for each strain of flies; n = 20 of flies

per arena). Data obtained were statistically evaluated with a ‘‘t’’

test.

Results

PINK1B9 Mutants Display Shortened Longevity
To determine the longevity of PINK1 mutant flies, individuals

were examined for their life span and compared to WT flies.

These results are shown in Fig. 1. As shown in the figure, PINK1B9

mutants displayed a shorter life span compared to WT

(P,0.0001). PINK1B9 flies started to die dramatically about 15

days after eclosion. The maximum number of days a mutant fly

lived was about 53 days. These data show a reduced lifespan for

PINK1B9 mutants as was previously reported by Imai et al. [29].

PINK1B9 Mutants Show Odor-specific Reduced
Electrophysiological Response

We next sought to determine if PINK1B9 mutant adults

exhibited reduced electrophysiological response in an odor-specific

manner. We found that the olfactory stimulations consistently

elicited a typical waveform EAG response with rapid depolariza-

tion followed by a slow recovery phase in both WT and in

PINK1B9 mutant adults. The EAG values recorded in WT from e

age group I were on the average higher than those obtained in

mutant flies from the matching age group (P,0.05). Lower EAG

values were measured when mutants were stimulated both with

the oils and the synthetics. In detail the olfactory responses

recorded from 15 specimens for both WT and PINK1B9 individuals

in age group I exhibited a dose response in both strains for all the

stimuli administered. Thus, all animals responded with a higher

EAG amplitude when stimulated with increased concentrations of

odors. The results are summarized in Figs. 2A and 2D. The EAG

signal amplitudes evoked by stimuli were significantly lower in

PINK1B9 than in WT for the majority of odors administered at the

mid- and highest concentrations (P,0.05), with the exception of

LT, which also displayed a significantly lower amplitude at the

lowest concentration. Among the synthetic odors tested, the EAGs

evoked by isoamyl acetate and ethyl 3-hydroxybutyrate in

PINK1B9 did not result significantly lower than those detected in

WT, even displaying an undersized amplitude. The only exception

was for the stimulation with isoamyl acetate at the lowest

concentration, where EAGs in PINK1B9 flies had a significantly

lower amplitude than those in WT (P,0.05). Sample tracings of

EAG recorded in WT and in PINK1B9 mutant adults in response

to stimulation with RM essential oil at increasing concentrations

are shown in Fig. 2G, where the signal amplitude in WT is clearly

higher compared to mutants.

To see if impairment of responses to stimuli progressed with age

in PINK1B9 mutants, the experiments were repeated using groups

of middle-aged (group II) and older flies (group III), since PINK1B9

mutants began to die at around the 15th day with 50% of the flies

being dead after 30 days (Fig. 1). These results are shown in

Fig. 2B, E for the group II and in 2C, F for the group III. The

results indicated that both strain of flies suffered from a general

decrease in the average response correlated with aging (P,0.05).

In fact, the average EAG amplitudes measured in flies from group

II and III were lower than the values recorded in flies from group

I. Despite the progressive decrease in olfactory response, the EAG

amplitudes in WT from groups I, II and III were constantly higher

than those in mutants of the age-matched groups (P,0.05).

Interestingly, the PINK1B9 flies, with respect to WT, displayed a

different development of their decreasing trend in olfactory

sensitivity with aging. Mutants in fact, which in any case displayed

a lowered basal EAG, had the general significant decrease of

sensitivity when they reached middle age (group II). The average

EAG values measured in older PINK1B9 flies from group III did

not change substantially from those recorded in mutant flies from

group II, thus sharing similarities and lacking statistical signifi-

cance when compared.

In detail, the EAGs recorded in both strains of flies from group

II (Fig. 2B, E) shared a similar trend for dose response dependence

as observed in flies from group I. The difference between the two

strains in response to odor stimuli was still present and almost

unaltered. The only exception was with isoamyl acetate; significant

Figure 4. Western blot analysis of PINK1B9 heads shows a
reduced expression of the bruchpilot protein. A: Western blot
analysis of adult head homogenate from WT and PINK1B9 flies showing
the nc82-labeled Bruchpilot protein band (BRP, top) and the loading
control Tubulin (bottom). The amount of Bruchpilot protein was
quantified by analyzing the intensity of the bands on the autoradio-
gram with a densitometer. Data were normalized by dividing optical
density of the bands corresponding to Bruchpilot protein by that of the
band for a-Tubulin. B: Statistical evaluation of the densitometric data
shows that the expression of Bruchpilot protein in PINK1B9 is
significantly lower compared to WT (*significantly lower than its
matching value; P,0.05).
doi:10.1371/journal.pone.0073156.g004
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differences were observed between the mutant and the wild type

adults at all concentrations tested.

The general decreasing trend in sensitivity described above for

WT of group III is clearly appreciable as shown in Figs. 2C and

2F, when the stimulation with the highest concentration of odors

was never enough to elicit a significant higher amplitude in the

EAGs, except for a-pinene which continued to evoke a plain dose

response. When WT aged the differences in PINK1B9 of the

matched-age group tended to decrease, although WTs still

maintained a higher average value (P,0.05). In PINK1B9 even

the dose response relationship appear to be altered as in WT, since

neither of the stimuli elicited a significant EAG amplitude when

administered at the highest concentration. The average values

were not significantly different from those recorded in mutants of

group II.

Antennal Lobes in PINK1 Mutant Adults Show Reduced
Expression of Bruchpilot Protein

To see if the defects observed in the electroantennograms can be

correlated with any defects in the antennal lobes (ALs) in the brain,

we performed immunostaining of brains from PINK1B9 mutants

and compared the pattern to wild type brains. We used the

monoclonal antibody nc82 for this purpose. The monoclonal nc82

antibody was raised against the Bruchpilot protein, which is a

marker for active zones in synapsis. The labelling of the synapses

with nc82 showed the pair of ALs located frontally in the brain, as

well as their sets of glomeruli (Fig. 3A). The analysis performed on

the stacks of images acquired with confocal microscopy allowed us

to obtain volume renderings of the ALs. Ten specimens for both

WT and PINK1B9 were analyzed and their corresponding average

size in mm3 was measured. These results are shown in Fig. 3B for

WT and Fig. 3C for PINK1B9 mutants. The results obtained

revealed no particular divergence in the shape or in volume

quantification of ALs. The volume values measured were

4063662556 for WT and 3461963130 mm3 for PINK1B9and no

statistical significance was found between the two strains (Fig. 3D).

Examples of stained ALs in WT and PINK1B9 adults are shown

in Figs. 3E and 3F respectively. In PINK1B9 mutants, as is clearly

seen in the image, the staining was less intensive and the ALs were

much less bright and less defined compared to WT. This result

suggests a reduced expression of the Bruchpilot protein. The graph

in Fig. 3G summarizes the results for the quantification of nc82

Figure 5. Mitochondria within the presynaptic boutons in the antennal lobes present structural alterations in PINK1B9mutants.
Transmission electron microscopy (TEM) images of mitochondria within the olfactory bulbs of WT and PINK1B9 Drosophila. A: Two mitochondria in a
presynaptic bouton of a WT (scale bar = 200 mm). The regular array of mitochondrial cristae (arrowheads) is surrounded by an electron-dense matrix.
B: A mitochondrion in a presynaptic bouton of a PINK1B9 mutant (scale bar = 100 mm). The mitochondrion presents a swelling on its external
membrane (arrow) and the mitochondrial cristae are highly degenerated (asterisk). C: a conventional mitochondrion in a WT (scale bar = 200 mm). The
regular electron-dense matrix surrounds the mitochondrial cristae (asterisk). D: The abnormal mitochondrial morphology in a PINK1B9 mutant. The
mitochondrial cristae are fragmented (arrowhead). E: The abnormal mitochondrial morphology in a PINK1B9 mutant (scale bar = 100 mm). Remnants of
the mitochondrial cristae are visible within the mitochondrial matrix (scale bar = 100 mm).
doi:10.1371/journal.pone.0073156.g005
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staining intensity in ALs. The gray scale values measured for each

AL in the demarcated ROI were averaged for each strain and then

compared. These reveal a significantly lower intensity value for

PINK1B9 (P,0.05) compared to WT.

To see if the expression of the Bruchpilot protein was affected in

PINK1B9 brains, we performed Western blot analysis of WT and

PINK1B9 head homogenate using nc82 (Fig. 4A). The comparison

of densitometric data obtained by analysing the corresponding

bands showed that there is a significant reduction in the amount of

the Bruchpilot protein in PINK1B9. The average overall expression

of Bruchpilot in PINK1B9 was about 21.9% of the wild type,

significantly lower than that of WT (P,0.002). These results are

shown in the histogram in Fig. 4B. It is known that proper

expression of this protein is critical for the structural integrity of

synaptic active zones and for normal-evoked neurotransmitter

release in Drosophila [30]. This reduced expression therefore

indicates that the ALs in PINK1B9 mutants have likely suffered

damage to the structural integrity of synaptic active zones and

perhaps underlie their defective odor perception (see Discussion).

In the Antennal Lobes of PINK1B9 the Mitochondria within
the Presynaptic Boutons were Altered

The mitochondria within the presynaptic boutons of PINK1B9

ALs appeared clearly degenerated in comparison with those in

WT (Fig. 5), being swollen and often presenting wide swellings on

their outer membrane (Fig. 5B). The mitochondrial cristae, clearly

fragmented and in some cases completely deteriorated, appeared

surrounded by a highly altered, inhomogeneous electron trans-

parent mitochondrial matrix (compare Fig. 5A, B with C, D).

Furthermore we observed a significantly higher number of

presynaptic boutons without mitochondria in PINK1B9 than in

WT specimens (Fig. 5E). These results suggest that the loss of

function of the PINK1 gene induced degeneration of mitochondria

also within the presynaptic boutons in the ALs.

Behaviour
To better understand if, and in what way, olfactory behaviour

may be affected in PINK1B9 flies, we performed a series of free-

walking bioassays. Our observations (data not shown) revealed an

AI score of 0.460.05 and 0.560.3 (mean 6 SEM) in WT and

PINK1B9 respectively. The result obtained was not statistically

significant (p = 0.6).

Discussion

The aim of this study was to determine if there is any olfactory

impairment in the PINK1B9 mutant both in peripheral olfactory

organs and in the organization of olfactory areas in the brain. To

the best of our knowledge, this is the first study to examine possible

olfactory deficits using Drosophila models. The data obtained are of

particular interest given that it is in a scarcely investigated area of

preclinical PD. The olfactory approach to this issue appears to be

especially promising in view of its potential role in early diagnosis

of premotor PD in human patients. Our results add to the debate

on the role of olfactory measurements in predicting PD [31]. This

work supports the idea that olfactory measurements may be a valid

tool in the diagnosis of premotor PD. Our work also indicates that

the molecular basis for such defects may lie within the ALs with

structural defects, either developmental or post-developmental,

affecting synaptic connectivity and or transmission.

An EAG represents the summed activity of the sensory receptor

neurons in the antennae [32], which in flies is the equivalent of a

nose. The EAG recordings indicate a reduction in the response to

various odor stimuli. A significant decrease in sensitivity was

detected in PINK1B9 after stimulation with a-pinene and 1-

hexanol, and all the essential oils tested, thus indicating a general

loss of sensitivity to odors. Furthermore, a significant decrease in

sensitivity was detected when stimulating mutant adults with

isoamyl acetate, thus indicating a progressive loss of sensitivity to

odors with age. These results confirm the importance to

establishing the right test stimuli for the olfactory measurement

test. In fact, the data available in the literature often disagree on

what should be the right test stimuli. In any case, n-butanol, is

considered one of the best stimuli for screening human patients

[33].

We did expect to detect a much more pronounced worsening in

the olfactory response with age in PINK1B9 compared to the wild

type, especially given that the colony was halving between 15–30

days from eclosion. However, while there was a small reproducible

difference with older animals, the difference was statistically not

significant. Therefore, we conclude that it is unlikely that PINK1

mutants significantly suffer a greater loss of sensitivity with age

compared to WT.

On the other hand, data obtained through immunohistochem-

istry together with the Western blot analysis are complementary to

the electrophysiological findings. Indeed, PINK1B9 mutant flies

with reduced sensitivity to olfactory stimuli showed less defined

nc82 staining, as revealed by quantification of staining intensity in

their ALs and quantification of Bruchpilot protein expression. This

result therefore indicates an altered expression of the Bruchpilot

protein. Our Western analysis data were also consistent with

PINK1 affecting Bruchpilot protein expression. It is known that

proper expression of Bruchpilot is critical for maintaining

structural integrity of synaptic active zones and for normal-evoked

neurotransmitter release in Drosophila [32]. Finally, those findings

were completed by the observation of the degenerative alterations

of the presynaptic boutons in PINK1B9 as revealed by the

transmission electron microscopic analysis. The active presynaptic

zones are actually the termination of the cholinergic [34] olfactory

sensory neurons (OSNs) that project to the ALs. Our results show

that in PINK1B9 mutants these zones are significantly damaged.

The degeneration of OSNs likely also leads to a loss of

functionality, e.g. an impaired synthesis of receptor proteins,

which was revealed by the lowered average EAGs amplitudes

recorded in PINK1B9. Mitochondrial degeneration may also lead

to the underexpression of Bruchpilot.

Studies on the causes of olfactory impairment in humans are

often controversial since it is difficult to study in vivo and only by

imaging techniques or post-mortem analysis. In a study by

Rombeaux et al [35] the reduction of olfactory bulbs (OBs)

volume is considered a feature of peripheral olfactory damage. In

fact, they found a correlation between peripheral olfactory loss and

reduction in OBs volume, the latter declining in parallel with the

olfactory function. In the case of PD patients, the progressive

decline in the sense of smell does not appear to affect the volume of

OBs [36]. On However, a more recent study observed a significant

decrease in OBs volume and an impairment of the sense of smell

in their panel of PD patients [37] [38]. Our results on volumetric

measurements of ALs indicate that PINK1 mutants had a lower

volume compared to WT, although the difference was not

statistically significant. However, we think that the alteration in

the olfactory synaptic structures may be responsible for modifying

the olfactory perception and behaviour in the PINK1 mutant.

Concerning the behavior, our data indicated that the attraction

index (AI) scored by WTs and mutants were not different.

However, the AI scored by the mutants appeared not homoge-

neous with a high inner variability. Despite of an apparently

higher AI scored by mutants, on the average more WT (,39% vs
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,33%) were trapped in stimulus. These data may be explained by

taking into account that normal sensory perception, and thus odor

evoked behaviour, is based not only on an input from OSNs but

mostly on a balance between local excitatory and inhibitory

interneurons within the ALs [39]. It was demonstrated, by means

of genetic tools, that the suppression or reduction of a subset of

synapses, mostly inhibitory, converted the response to odors as

repulsive, while the suppression of another subset of mostly

excitatory synapses shifted the perceptions of odorants to

attraction. In other words, those previous reports suggest that

PINK1B9 mutants may suffer from a certain impairment in the

normal balance of local interneurons within the ALs.

Conclusions

Our functional approach to merging sensory electrophysiology

with morphology of olfactory areas in the brain is unique in that a

correlation between the two will greatly assist in our understanding

of odor deficits in PD that may be used to help in diagnosing and

treating PD patients. This approach can perhaps be used to

evaluate and understand other neurodegenerative diseases such as

Alzheimers and Huntington’s. At the same time, our data obtained

with the EAG and the morphological analysis show the

impairment of the olfactory function detectable both peripherally

and in the CNS, and strongly suggest that the altered synaptic

organization represents a neurodegenerative process correlated

with mitochondrial dysfunction caused by the mutation of the

gene PINK1 [40]. Nonetheless, our results confirm that the

Drosophila PD model PINK1B9 represents a powerful tool not only

in examining the pathogenesis and pathophysiology of PD, but

also an important first step in discriminating new therapeutic

approaches using olfaction as a criterion and which could be used

to effectively monitor progression of PD in humans, inasmuch as

the olfactory disturbance is often nothing but a warning of a

general inner disease.
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