42 research outputs found

    High Energy Cosmic Rays From Supernovae

    Get PDF
    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around 1017\sim 10^{17} eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.Comment: Final draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdi

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Modulation at 10 µm with Array Detectors ?

    No full text

    Design of the MWIR channels of EChO

    No full text
    International audienceIn this paper, we present the design of the MWIR channels of EChO. Two channels cover the 5-11 micron spectral range. The choice of the boundaries of each channel is a trade-off driven by the science goals (spectral features of key molecules) and several parameters such as the common optics design, the dichroic plates design, the optical materials characteristics, the detector cut-off wavelength. We also will emphasize the role of the detectors choice that drives the thermal and mechanical designs and the cooling strategy

    Exoplanet host-star properties: The active environment of exoplanets

    Full text link
    The primary objectives of the ExoplANETS-A project are to: Establish new knowledge on exoplanet atmospheres; establish new insight on influence of the host star on the planet atmosphere; disseminate knowledge, using online, web-based platforms. The project, funded under the EU's Horizon-2020 programme, started in January 2018 and has a duration ∼3 years. We present an overview of the project, the activities concerning the host stars and some early results on the host stars

    The science case for PILOT I: Summary and overview

    No full text
    PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5-m optical/ infrared telescope to be located at Dome C on the Antarctic plateau. Conditions at Dome C are known to be exceptional for astronomy. The seeing (above ∼30 m height), coherence time, and isoplanatic angle are all twice as good as at typical mid-latitude sites, while the water-vapour column, and the atmosphere and telescope thermal emission are all an order of magnitude better. These conditions enable a unique scientific capability for PILOT, which is addressed in this series of papers. The current paper presents an overview of the optical and instrumentation suite for PILOT and its expected performance, a summary of the key science goals and observational approach for the facility, a discussion of the synergies between the science goals for PILOT and other telescopes, and a discussion of the future of Antarctic astronomy. Paper II and Paper III present details of the science projects divided, respectively, between the distant Universe (i.e. studies of first light, and the assembly and evolution of structure) and the nearby Universe (i.e. studies of Local Group galaxies, the Milky Way, and the Solar System). © Astronomical Society of Australia 2009
    corecore