17 research outputs found

    Whole Genomes of Chandipura Virus Isolates and Comparative Analysis with Other Rhabdoviruses

    Get PDF
    The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003–2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003–2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV

    Plant Growth-Promoting Microbes from Herbal Vermicompost

    Get PDF
    Overreliance on chemical pesticides and fertilizers has resulted in problems including safety risks, outbreaks of secondary pests normally held in check by natural enemies, insecticide resistance, environmental contamination, and decrease in biodiversity. The increasing costs and negative effects of pesticides and fertilizers necessitate the idea of biological options of crop protection and production. This includes the use of animal manure, crop residues, microbial inoculum, and composts. They provide natural nutrition, reduce the use of inorganic fertilizers, develop biodiversity, increase soil biological activity, maintain soil physical properties, and improve environmental health

    Not Available

    No full text
    Not AvailableThe study investigated the important epidemiological parameters and farm-level economic costs of FMD incidence in cattle and buffaloes during 2013-14 to 2015-16 in various states of India. Multistage random sampling procedure was adopted for the primary survey and data was collected through face-to-face personal interview from 18,609 cattle and buffalo rearing farm households from 123 districts across twelve states and one Union Territory. Besides epidemiological parameters, different farm-level direct and indirect loss associated with FMD was assessed at disaggregated level (states) by employing deterministic mathematical models. Highest number of affected villages and disease incidence was observed in non- FMD control programme (FMD-CP) implemented Madhya Pradesh and Assam states, respectively whereas negligible incidence was in FMD-CP implemented Punjab state. The disease incidence was high during 2013-14 and declined during 2014-15 and 2015-16, respectively implied severe incidence scenario (2013-14) succeeded by moderate (2014-15) and mild (2015-16) scenarios. The crossbred and high productive animals were severely affected than local breeds whereas on sexwise and agewise comparison revealed higher incidence in females and adult animals. During severe incidence scenario, milk loss/animal ranged from USD 6.87-47.44, 18.42-125.88, 16.33-91.43, and 27.17-123.62; mortality loss/animal ranged from USD 32.61-804.27, 30.76-577.7, 65.36-502.2, and 188.04-413.7; distress sale loss/animal ranged from USD 3.22-188.63, 64.34-519.3, 214.47-341.8, and 209.11-450.3; and opportunity cost of labour/animal from USD 5.49-54.29, 5.49-67.78; 7.95-31.37 and 9.83-72.38 in indigenous cattle, crossbred cattle, local and improved buffalo, respectively. The estimated draught power loss/animal varied from USD 39.46-142.94 with least being in Madhya Pradesh and highest in Assam states whereas the median treatment cost/animal was USD 9.18 and USD 27.07 in indigenous cattle and upgraded buffaloes, respectively. The total farm-level economic loss projected due to FMD in cattle and buffaloes in India was USD 3159 million (INR 221,110 million), USD 270 million (INR 18,910 million) and USD 152 million (INR 10,610 million), respectively during the severe, moderate and mild incidence scenarios at 2015-16 constant prices. The loss varied across the states, and in severe incidence scenario, the country might lose USD 3.2 billion/year and hence, the bi-annual vaccination schedule need to be strictly implemented in all the states. Besides timely vaccination coverage, managing unabated animal movement, educating and motivating the farmers to vaccinate their animals might reduce the incidence and consequential losses to various stakeholders in endemic states like IndiaNot Availabl
    corecore