14 research outputs found

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Role of the WNK-activated SPAK kinase in regulating blood pressure

    Get PDF
    Mutations within the with-no-K(Lys) (WNK) kinases cause Gordon's syndrome characterized by hypertension and hyperkalaemia. WNK kinases phosphorylate and activate the STE20/SPS1-related proline/alanine-rich kinase (SPAK) protein kinase, which phosphorylates and stimulates the key Na(+):Cl(−) cotransporter (NCC) and Na(+):K(+):2Cl(−) cotransporters (NKCC2) cotransporters that control salt reabsorption in the kidney. To define the importance of this pathway in regulating blood pressure, we generated knock-in mice in which SPAK cannot be activated by WNKs. The SPAK knock-in animals are viable, but display significantly reduced blood pressure that was salt-dependent. These animals also have markedly reduced phosphorylation of NCC and NKCC2 cotransporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in messenger RNA (mRNA) levels. On a normal Na(+)-diet, the SPAK knock-in mice were normokalaemic, but developed mild hypokalaemia when the renin–angiotensin system was activated by a low Na(+)-diet. These observations establish that SPAK plays an important role in controlling blood pressure in mammals. Our results imply that SPAK inhibitors would be effective at reducing blood pressure by lowering phosphorylation as well as expression of NCC and NKCC2. See accompanying Closeup by Maria Castañeda-Bueno and Gerald Gamba (DOI 10.1002/emmm.200900059)
    corecore