19 research outputs found

    Comparison of Replication-Competent, First Generation, and Helper-Dependent Adenoviral Vaccines

    Get PDF
    All studies using human serotype 5 Adenovirus (Ad) vectors must address two major obstacles: safety and the presence of pre-existing neutralizing antibodies. Helper-Dependent (HD) Ads have been proposed as alternative vectors for gene therapy and vaccine development because they have an improved safety profile. To evaluate the potential of HD-Ad vaccines, we compared replication-competent (RC), first-generation (FG) and HD vectors for their ability to induce immune responses in mice. We show that RC-Ad5 and HD-Ad5 vectors generate stronger immune responses than FG-Ad5 vectors. HD-Ad5 vectors gave lower side effects than RC or FG-Ad, producing lower levels of tissue damage and anti-Ad T cell responses. Also, HD vectors have the benefit of being packaged by all subgroup C serotype helper viruses. We found that HD serotypes 1, 2, 5, and 6 induce anti-HIV responses equivalently. By using these HD serotypes in heterologous succession we showed that HD vectors can be used to significantly boost anti-HIV immune responses in mice and in FG-Ad5-immune macaques. Since HD vectors have been show to have an increased safety profile, do not possess any Ad genes, can be packaged by multiple serotype helper viruses, and elicit strong anti-HIV immune responses, they warrant further investigation as alternatives to FG vectors as gene-based vaccines

    Functional Impairment of Central Memory CD4 T Cells Is a Potential Early Prognostic Marker for Changing Viral Load in SHIV-Infected Rhesus Macaques

    Get PDF
    In HIV infection there is a paucity of literature about the degree of immune dysfunction to potentially correlate and/or predict disease progression relative to CD4+ T cells count or viral load. We assessed functional characteristics of memory T cells subsets as potential prognostic markers for changing viral loads and/or disease progression using the SHIV-infected rhesus macaque model. Relative to long-term non-progressors with low/undetectable viral loads, those with chronic plasma viremia, but clinically healthy, exhibited significantly lower numbers and functional impairment of CD4+ T cells, but not CD8+ T cells, in terms of IL-2 production by central memory subset in response to PMA and ionomycine (PMA+I) stimulation. Highly viremic animals showed impaired cytokine-production by all T cells subsets. These results suggest that functional impairment of CD4+ T cells in general, and of central memory subset in particular, may be a potential indicator/predictor of chronic infection with immune dysfunction, which could be assayed relatively easily using non-specific PMA+I stimulation

    Evidence for predilection of macrophage infiltration patterns in the deeper midline and mesial temporal structures of the brain uniquely in patients with HIV-associated dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 penetrates the central nervous system, which is vital for HIV-associated dementia (HAD). But the role of cellular infiltration and activation together with HIV in the development of HAD is poorly understood.</p> <p>Methods</p> <p>To study activation and infiltration patterns of macrophages, CD8+ T cells in relation to HIV in diverse CNS areas of patients with and without dementia. 46 brain regions from two rapidly progressing severely demented patients and 53 regions from 4 HIV+ non-dementia patients were analyzed. Macrophage and CD8+ T cell infiltration of the CNS in relation to HIV was assessed using immuno-histochemical analysis with anti-HIV (P24), anti-CD8 and anti-CD68, anti-S-100A8 and granzyme B antibodies (cellular activation). Statistical analysis was performed with SPSS 12.0 with Student's t test and ANOVA.</p> <p>Results</p> <p>Overall, the patterns of infiltration of macrophages and CD8+ T cells were indiscernible between patients with and without dementia, but the co-localization of macrophages and CD8+ T cells along with HIV P24 antigen in the deeper midline and mesial temporal structures of the brain segregated the two groups. This predilection of infected macrophages and CD8+ T cells to the middle part of the brain was unique to both HAD patients, along with unique nature of provirus gag gene sequences derived from macrophages in the midline and mesial temporal structures.</p> <p>Conclusion</p> <p>Strong predilection of infected macrophages and CD8+ T cells was typical of the deeper midline and mesial temporal structures uniquely in HAD patients, which has some influence on neurocognitive impairment during HIV infection.</p

    HLA-C and HIV-1: friends or foes?

    Get PDF
    The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins

    Thermal Stability of the Human Immunodeficiency Virus Type 1 (HIV-1) Receptors, CD4 and CXCR4, Reconstituted in Proteoliposomes

    Get PDF
    BACKGROUND: The entry of human immunodeficiency virus (HIV-1) into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4. METHODOLOGY/PRINCIPAL FINDINGS: We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (E(a)) of 269 kJ/mol (64.3 kcal/mol) and an inactivation temperature (T(i)) of 56Β°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an E(a) of 278 kJ/mol (66.5 kcal/mol), and a T(i) of 52.2Β°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules. CONCLUSIONS/SIGNIFICANCE: Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors
    corecore