88 research outputs found
Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective
Over the last decade the search for compounds combining the resources of
semiconductors and ferromagnets has evolved into an important field of
materials science. This endeavour has been fuelled by continual demonstrations
of remarkable low-temperature functionalities found for ferromagnetic
structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample
observations of ferromagnetic signatures at high temperatures in a number of
non-metallic systems. In this paper, recent experimental and theoretical
developments are reviewed emphasising that, from the one hand, they disentangle
many controversies and puzzles accumulated over the last decade and, on the
other, offer new research prospects.Comment: review, 13 pages, 8 figures, 109 reference
Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.
Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for Ξ±(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form
Coherent magnetic semiconductor nanodot arrays
In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation
Five Year Incidence of Visual Field Loss in Adult Chinese. The Beijing Eye Study.
PURPOSE: To describe the cumulative 5 year incidence of visual field loss in adult Chinese in Greater Beijing. METHODS: The Beijing Eye Study 2006 included 3251 subjects (mean age 60.4Β±10.1 years) who had participated in the Beijing Eye Study 2001 and returned for re-examination. All participants underwent a comprehensive eye examination, including visual field test by frequency doubling threshold perimetry. An abnormal visual field was defined as reduced sensitivity in at least one test location. Incident visual field loss was defined as a change in visual field from normal at baseline to abnormal at follow-up. RESULTS: An incident visual field loss was detected in 273 eyes (4.3Β±0.5%)/235 subjects (7.3Β±0.5%). It was significantly associated with higher age (Pβ=β0.001), higher intraocular pressure (P<0.001), and higher fasting blood glucose concentration (Pβ=β0.019). Considering only eyes (nβ=β140) with a detected cause for visual field loss, the most frequent causes were cataract (68 (48.6%) eyes) followed by glaucoma (23 (16.4%) eyes), diabetic retinopathy (13 (9.3%) eyes), age-related macular degeneration (10 (7.1%) eyes), and myopic degenerative retinopathy (9 (6.4%) eyes). For 133 (48.7%) eyes with a visual field loss, the cause for the VFL remained unclear. CONCLUSIONS: The 5-year incidence of visual field loss was 4.3Β±0.5% per eye or 7.3Β±0.5% per subject. It increased significantly with age, intraocular pressure, and fasting blood glucose level. Major causes for the incidence of visual field loss were cataract, glaucoma and diabetic retinopathy
Localized-Statistical Quantification of Human Serum Proteome Associated with Type 2 Diabetes
BACKGROUND: Recent advances in proteomics have shed light to discover serum proteins or peptides as biomarkers for tracking the progression of diabetes as well as understanding molecular mechanisms of the disease. RESULTS: In this work, human serum of non-diabetic and diabetic cohorts was analyzed by proteomic approach. To analyze total 1377 high-confident serum-proteins, we developed a computing strategy called localized statistics of protein abundance distribution (LSPAD) to calculate a significant bias of a particular protein-abundance between these two cohorts. As a result, 68 proteins were found significantly over-represented in the diabetic serum (p<0.01). In addition, a pathway-associated analysis was developed to obtain the overall pathway bias associated with type 2 diabetes, from which the significant over-representation of complement system associated with type 2 diabetes was uncovered. Moreover, an up-stream activator of complement pathway, ficolin-3, was observed over-represented in the serum of type 2 diabetic patients, which was further validated with statistic significance (p = 0.012) with more clinical samples. CONCLUSIONS: The developed LSPAD approach is well fit for analyzing proteomic data derived from biological complex systems such as plasma proteome. With LSPAD, we disclosed the comprehensive distribution of the proteins associated with diabetes in different abundance levels and the involvement of ficolin-related complement activation in diabetes
- β¦