162 research outputs found

    Exceptional sperm cooperation in the wood mouse

    Get PDF
    Spermatozoa from a single male will compete for fertilization of ova with spermatozoa from another male when present in the female reproductive tract at the same time. Close genetic relatedness predisposes individuals towards altruism, and as haploid germ cells of an ejaculate will have genotypic similarity of 50%, it is predicted that spermatozoa may display cooperation and altruism to gain an advantage when inter-male sperm competition is intense. We report here the probable altruistic behaviour of spermatozoa in an eutherian mammal. Spermatozoa of the common wood mouse, Apodemus sylvaticus, displayed a unique morphological transformation resulting in cooperation in distinctive aggregations or 'trains' of hundreds or thousands of cells, which significantly increased sperm progressive motility. Eventual dispersal of sperm trains was associated with most of the spermatozoa undergoing a premature acrosome reaction. Cells undergoing an acrosome reaction in aggregations remote from the egg are altruistic in that they help sperm transport to the egg but compromise their own fertilizing ability

    High doses of medroxyprogesterone as the cause of disappearance of adherence of the zona pellucida to an oocyte

    Get PDF
    The zona pellucida (ZP) is an external glycoprotein membrane of oocytes of mammals and embryos in the early stage of their development. ZP first appears in growing ovarian follicles as an extracellular substance between the oocyte and granular cells. The zona pellucid markedly affects the development and maturation of the oocyte. The morphology of the ZP-oocyte complex allows a more precise determination of the oocyte maturity. According to numerous experimental studies, ZP is essential for preimplantation embryonic development of humans and other mammals. It prevents dispersion of blastomeres and enhances their mutual interactions. ZP is a dynamic structure responsible for the provision of nutrients to early forms of oocytes in mammals. The aim of the present study was untrastructural evaluation of the ZP-oocyte contact during inhibited ovulation. Female white rats (Wistar strain) received a suspension of medroxyprogesterone acetate (MPA) in incremental intramuscular bolus doses of 3.7 mg (therapeutic dose), 7.4 mg and 11.1 mg. The animals were decapitated 5 days after the administration of MPA. Ovarian sections were evaluated under a transmission electron microscope (TEM) Zeiss EM 900. Morphometric analysis of ZP was conducted using the cell imaging system by Olympus. In females exposed to therapeutic doses of MPA, ZP showed the structure of granular-fibrous reticulum of a medium electron density with single cytoplasmic processes originating from the surrounding structures. The oocyte cell membrane generated single, delicate processes directed toward ZP. Microvilli of the oocyte were short and thin. In the group receiving 7.4 mg of MPA, ZP had the structure of a delicate, loose granular-fibrous reticulum, and the oocyte cell membrane generated single microvilli directed toward ZP. In both those groups, the close ZP-oocyte contact was observed. Otherwise, in the group exposed to the highest MPA doses (11.1 mg), thicker and more numerous oocyte microvilli were found, which did not penetrate ZP matrix. They were dense, irregularly separated contour, forming a barrier between ZP and oocyte. The present findings are likely to suggest that MPA has inhibiting effects on the synthesis of binding proteins and causes the loss of the oocyte contact with ZP

    Zona Pellucida Domain-Containing Protein β-Tectorin is Crucial for Zebrafish Proper Inner Ear Development

    Get PDF
    BACKGROUND: The zona pellucida (ZP) domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear. METHODOLOGY/PRINCIPAL FINDINGS: We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised. CONCLUSIONS/SIGNIFICANCE: Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function

    The Beneficial Effects of Antifreeze Proteins in the Vitrification of Immature Mouse Oocytes

    Get PDF
    Antifreeze proteins (AFPs) are a class of polypeptides that permit organismal survival in sub-freezing environments. The purpose of this study was to investigate the effect of AFP supplementation on immature mouse oocyte vitrification. Germinal vesicle-stage oocytes were vitrified using a two-step exposure to equilibrium and vitrification solution in the presence or absence of 500 ng/mL of AFP III. After warming, oocyte survival, in vitro maturation, fertilization, and embryonic development up to the blastocyst stage were assessed. Spindle and chromosome morphology, membrane integrity, and the expression levels of several genes were assessed in in vitro matured oocytes. The rate of blastocyst formation was significantly higher and the number of caspase-positive blastomeres was significantly lower in the AFP-treated group compared with the untreated group. The proportion of oocytes with intact spindles/chromosomes and stable membranes was also significantly higher in the AFP group. The AFP group showed increased Mad2, Hook-1, Zar1, Zp1, and Bcl2 expression and lower Eg5, Zp2, Caspase6, and Rbm3 expression compared with the untreated group. Supplementation of the vitrification medium with AFP has a protective effect on immature mouse oocytes, promoting their resistance to chilling injury. AFPs may preserve spindle forming ability and membrane integrity at GV stage. The fertilization and subsequent developmental competence of oocytes may be associated with the modulation of Zar1, Zp1/Zp2, Bcl2, Caspase6, and Rbm3

    An Epididymis-Specific Secretory Protein HongrES1 Critically Regulates Sperm Capacitation and Male Fertility

    Get PDF
    Mammalian sperm capacitation is an essential prerequisite to fertilizion. Although progress had been made in understanding the physiology and biochemistry of capacitation, little is known about the potential roles of epididymal proteins during this process. Here we report that HongrES1, a new member of the SERPIN (serine proteinase inhibitor) family exclusively expressed in the rat cauda epididymis and up-regulated by androgen, is secreted into the lumen and covers the sperm head. Co-culture of caudal sperms with HongrES1 antibody in vitro resulted in a significant increase in the percentage of capacitated spermatozoa. Furthermore, the percentage of capacitated spermatozoa clearly increased in rats when HongrES1 was down-regulated by RNAi in vivo. Remarkably, knockdown of HongrES1 in vivo led to reduced fertility accompanied with deformed appearance of fetuses and pups. These results identify HongrES1 as a novel and critical molecule in the regulation of sperm capacitation and male fertility

    Evolutionary patterns of two major reproduction candidate genes (Zp2 and Zp3) reveal no contribution to reproductive isolation between bovine species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving <it>Bos </it>and <it>Bison </it>species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (<it>Zp2 </it>and <it>Zp3</it>) for seven representative species (111 individuals) from the Bovini tribe, including five species from <it>Bos </it>and <it>Bison</it>, and two species each from genera <it>Bubalus </it>and <it>Syncerus</it>.</p> <p>Results</p> <p>A pattern of low levels of intraspecific polymorphism and interspecific divergence was detected for the two sequenced fragments each for <it>Zp2 </it>and <it>Zp3</it>. At intraspecific level, none of neutrality tests detected deviations from neutral equilibrium expectations for the two genes. Several haplotypes in both genes were shared by multiple species from <it>Bos </it>and <it>Bison</it>.</p> <p>Conclusions</p> <p>Here we argue that neither ancestral polymorphism nor introgressive hybridization alone can fully account for haplotype sharing among species from <it>Bos </it>and <it>Bison</it>, and that both scenarios have contributed to such a pattern of haplotype sharing observed here. Additionally, codon-based tests revealed strong evidence for purifying selection in the <it>Zp3 </it>coding haplotype sequences and weak evidence for purifying selection in the <it>Zp2 </it>coding haplotype sequences. Contrary to a general genetic pattern that genes or genomic regions contributing to reproductive isolation between species often evolve rapidly and show little or no gene flow between species, these results demonstrate that, particularly, those sequenced exons of the <it>Zp2 </it>and the <it>Zp3 </it>did not show any contribution to reproductive isolation between the bovine species studied here.</p

    Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small non-coding RNAs (sRNAs) are regarded as important regulators in prokaryotes and play essential roles in diverse cellular processes. <it>Xanthomonas oryzae </it>pathovar <it>oryzae </it>(<it>Xoo</it>) is an important plant pathogenic bacterium which causes serious bacterial blight of rice. However, little is known about the number, genomic distribution and biological functions of sRNAs in <it>Xoo</it>.</p> <p>Results</p> <p>Here, we performed a systematic screen to identify sRNAs in the <it>Xoo </it>strain PXO99. A total of 850 putative non-coding RNA sequences originated from intergenic and gene antisense regions were identified by cloning, of which 63 were also identified as sRNA candidates by computational prediction, thus were considered as <it>Xoo </it>sRNA candidates. Northern blot hybridization confirmed the size and expression of 6 sRNA candidates and other 2 cloned small RNA sequences, which were then added to the sRNA candidate list. We further examined the expression profiles of the eight sRNAs in an <it>hfq </it>deletion mutant and found that two of them showed drastically decreased expression levels, and another exhibited an Hfq-dependent transcript processing pattern. Deletion mutants were obtained for seven of the Northern confirmed sRNAs, but none of them exhibited obvious phenotypes. Comparison of the proteomic differences between three of the ΔsRNA mutants and the wild-type strain by two-dimensional gel electrophoresis (2-DE) analysis showed that these sRNAs are involved in multiple physiological and biochemical processes.</p> <p>Conclusions</p> <p>We experimentally verified eight sRNAs in a genome-wide screen and uncovered three Hfq-dependent sRNAs in <it>Xoo</it>. Proteomics analysis revealed <it>Xoo </it>sRNAs may take part in various metabolic processes. Taken together, this work represents the first comprehensive screen and functional analysis of sRNAs in rice pathogenic bacteria and facilitates future studies on sRNA-mediated regulatory networks in this important phytopathogen.</p

    Possible involvement of integrin-mediated signalling in oocyte activation: evidence that a cyclic RGD-containing peptide can stimulate protein kinase C and cortical granule exocytosis in mouse oocytes

    Get PDF
    BACKGROUND: Mammalian sperm-oocyte interaction at fertilization involves several combined interactions between integrins on the oocyte and integrin ligands (disintegrins) on the sperm. Recent research has indicated the ability of peptides containing the RGD sequence that characterized several sperm disintegrins, to induce intracellular Ca2+ transients and to initiate parthenogenetic development in amphibian and bovine oocytes. In the present study, we investigate the hypothesis that an integrin-associated signalling may participate in oocyte activation signalling by determining the ability of a cyclic RGD-containing peptide to stimulate the activation of protein kinase C (PKC) and the exocytosis of cortical granules in mouse oocytes. METHODS: An In-Vitro-Fertilization assay (IVF) was carried in order to test the condition under which a peptide containing the RGD sequence, cyclo(Arg-Gly-Asp-D-Phe-Val), was able to inhibit sperm fusion with zona-free mouse oocytes at metaphase II stage. PKC activity was determined by means of an assay based on the ability of cell lysates to phosphorylate MARKS peptide, a specific PKC substrate. Loss of cortical granules was evaluated by measuring density in the oocyte cortex of cortical granules stained with LCA-biotin/Texas red-streptavidin. In all the experiments, effects of a control peptide containing a non RGD sequence, cyclo(Arg-Ala-Asp-D-Phe-Val), were evaluated. RESULTS: The IVF assay revealed that the fusion rate declined significantly when insemination was carried out in the presence of cyclic RGD peptide at concentrations > or = 250 microM (P < 0.05, Student-Newman-Keuls Method). When the peptide was applied to the oocytes at these concentrations, a dose-dependent increase of PKC activity was observed, in association with a loss of cortical granules ranging from 38+/-2.5 % to 52+/-5.4 %. Evaluation of meiotic status revealed that cyclic RGD peptide was ineffective in inducing meiosis resumption under conditions used in the present study. CONCLUSION: The presents results provide evidence that a cyclic RGD peptide highly effective in inhibiting sperm-oocyte interaction stimulates in mouse oocytes the activation of PKC and the exocytosis of cortical granules. These data support the view that RGD-binding receptors may function as signalling receptors giving rise integrated signalling not sufficient for a full oocyte activation response. This study may contribute to the understanding of possible negative effects of skipping gamete interaction in IVF techniques

    Estradiol inhibits the effects of extracellular ATP in human sperm by a non genomic mechanism of action

    Get PDF
    Steroid hormones, beside their classical genomic mechanism of action, exert rapid, non genomic effects in different cell types. These effects are mediated by still poorly characterized plasma membrane receptors that appear to be distinct from the classic intracellular receptors. In the present study we evaluated the non genomic effects of estradiol (17βE2) in human sperm and its effects on sperm stimulation by extracellular ATP, a potent activator of sperm acrosome reaction. In human sperm 17βE2 induced a rapid increase of intracellular calcium (Ca2+) concentrations dependent on an influx of Ca2+ from the extracellular medium. The monitoring of the plasma membrane potential variations induced by 17βE2 showed that this steroid induces a rapid plasma membrane hyperpolarization that was dependent on the presence of Ca2+ in the extracellular medium since it was absent in Ca2+ free-medium. When sperm were pre-incubated in the presence of the K+ channel inhibitor tetra-ethylammonium, the 17βE2 induced plasma membrane hyperpolarization was blunted suggesting the involvement of K+ channels in the hyperpolarizing effects of 17βE2. Extracellular ATP induced a rapid plasma membrane depolarization followed by acrosome reaction. Sperm pre-incubation with 17βE2 inhibited the effects of extracellular ATP on sperm plasma membrane potential variations and acrosome reaction. The effects of 17βE2 were specific since its inactive steroisomer 17αE2 was inactive. Furthermore the effects of 17βE2 were not inhibited by tamoxifen, an antagonist of the classic 17βE2 intracellular receptor

    The Parental Non-Equivalence of Imprinting Control Regions during Mammalian Development and Evolution

    Get PDF
    In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two orthogonal evolutionary forces: pressure to tightly regulate genes affecting the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline
    corecore