16 research outputs found

    The circadian rhythm of corticosteroid-binding globulin has little impact on cortisol exposure after hydrocortisone dosing

    Get PDF
    CONTEXT: Optimisation of hydrocortisone replacement therapy is important to prevent under- and over dosing. Hydrocortisone pharmacokinetics is complex as circulating cortisol is protein bound mainly to corticosteroid-binding globulin (CBG) that has a circadian rhythm. OBJECTIVE: A detailed analysis of the CBG circadian rhythm and its impact on cortisol exposure after hydrocortisone administration. DESIGN AND METHODS: CBG was measured over 24 h in 14 healthy individuals and, employing a modelling and simulation approach using a semi-mechanistic hydrocortisone pharmacokinetic model, we evaluated the impact on cortisol exposure (area under concentration-time curve and maximum concentration of total cortisol) of hydrocortisone administration at different clock times and of the changing CBG concentrations. RESULTS: The circadian rhythm of CBG was well described with two cosine terms added to the baseline of CBG: baseline CBG was 21.8 μg/mL and inter-individual variability 11.9%; the amplitude for the 24 h and 12 h cosine functions were relatively small (24 h: 5.53%, 12 h: 2.87%) and highest and lowest CBG were measured at 18:00 and 02:00, respectively. In simulations, the lowest cortisol exposure was observed after administration of hydrocortisone at 23:00-02:00, whereas the highest was observed at 15:00-18:00. The differences between the highest and lowest exposure were minor (≤12.2%), also regarding the free cortisol concentration and free fraction (≤11.7%). CONCLUSIONS: CBG has a circadian rhythm but the difference in cortisol exposure is ≤12.2% between times of highest and lowest CBG concentrations; therefore hydrocortisone dose adjustment based on time of dosing to adjust for the CBG concentrations is unlikely to be of clinical benefit

    Expensive Egos: Narcissistic Males Have Higher Cortisol

    Get PDF
    Background: Narcissism is characterized by grandiosity, low empathy, and entitlement. There has been limited research regarding the hormonal correlates of narcissism, despite the potential health implications. This study examined the role of participant narcissism and sex on basal cortisol concentrations in an undergraduate population. Methods and Findings: Participants were 106 undergraduate students (79 females, 27 males, mean age 20.1 years) from one Midwestern and one Southwestern American university. Narcissism was assessed using the Narcissistic Personality Inventory, and basal cortisol concentrations were collected from saliva samples in a laboratory setting. Regression analyses examined the effect of narcissism and sex on cortisol (log). There were no sex differences in basal cortisol, F(1,97) =.20, p =.65, and narcissism scores, F(1,97) =.00, p =.99. Stepwise linear regression models of sex and narcissism and their interaction predicting cortisol concentrations showed no main effects when including covariates, but a significant interaction, b =.27, p =.04. Narcissism was not related to cortisol in females, but significantly predicted cortisol in males. Examining the effect of unhealthy versus healthy narcissism on cortisol found that unhealthy narcissism was marginally related to cortisol in females, b =.27, p =.06, but significantly predicted higher basal cortisol in males, b =.72, p =.01, even when controlling for potential confounds. No relationship was found between sex, narcissism, or their interaction on selfreported stress

    Analyzing scheduling in the food-processing industry:Structure and tasks

    No full text
    Production scheduling has been widely studied in several research areas, resulting in a large number of methods, prescriptions, and approaches. However, the impact on scheduling practice seems relatively low. This is also the case in the food-processing industry, where industry-specific characteristics induce specific and complex scheduling problems. Based on ideas about decomposition of the scheduling task and the production process, we develop an analysis methodology for scheduling problems in food processing. This combines an analysis of structural (technological) elements of the production process with an analysis of the tasks of the scheduler. This helps to understand, describe, and structure scheduling problems in food processing, and forms a basis for improving scheduling and applying methods developed in literature. It also helps in evaluating the organisational structures and information flows related to scheduling.</p
    corecore