172 research outputs found

    Nonequilibrium dynamics of a pure dry friction model subjected to colored noise

    Get PDF
    We investigate the impact of noise on a two-dimensional simple paradigmatic piecewise-smooth dynamical system. For that purpose we consider the motion of a particle subjected to dry friction and coloured noise. The finite correlation time of the noise provides an additional dimension in phase space, a nontrivial probability current, and thus establishes a proper nonequilibrium regime. Furthermore, the finite noise correlation time allows for the study of stick-slip phenomena which show up as a singular component in the stationary probability density. Analytic insight can be provided by application of the unified coloured noise approximation, developed by Jung and H\"anggi (Phys. Rev. A 35, 4464 (R) (1987)). The analysis of probability currents and a closer look at power spectral densities underpin the observed stick-slip transitions which are related with a critical value of the noise correlation time

    PUK7 HOSPITAL DISCHARGE COST AND LENGTH OF STAY OF PERITONEAL DIALYSIS AND HEMODIALYSIS

    Get PDF

    Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays

    Get PDF
    We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical framework for detecting an individual's presence within a mixture, then show, through simulations, the limits associated with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than 0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these findings are discussed

    Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcitonin gene-related peptide (CGRP) has a key role in migraine pathophysiology and is associated with activation of the trigeminovascular system. The trigeminal ganglion, storing CGRP and its receptor components, projects peripheral to the intracranial vasculature and central to regions in the brainstem with Aδ- and C-fibers; this constitutes an essential part of the pain pathways activated in migraine attacks. Therefore it is of importance to identify the regions within the brainstem that processes nociceptive information from the trigeminovascular system, such as the spinal trigeminal nucleus (STN) and the C1-level of the spinal cord. Immunohistochemistry was used to study the distribution and relation between CGRP and its receptor components - calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) - in human and rat STN and at the C1-level, using a set of newly well characterized antibodies. In addition, double-stainings with CGRP and myelin basic protein (MBP, myelin), synaptophysin (synaptic vesicles) or IB4 (C-fibers in general) were performed.</p> <p>Results</p> <p>In the STN, the highest density of CGRP immunoreactive fibers were found in a network around fiber bundles in the superficial laminae. CLR and RAMP1 expression were predominately found in fibers in the spinal trigeminal tract region, with some fibers spanning into the superficial laminae. Co-localization between CGRP and its receptor components was not noted. In C1, CGRP was expressed in fibers of laminae I and II. The CGRP staining was similar in rat, except for CGRP positive neurons that were found close to the central canal. In C1, the receptor components were detected in laminae I and II, however these fibers were distinct from fibers expressing CGRP as verified by confocal microscopy.</p> <p>Conclusions</p> <p>This study demonstrates the detailed expression of CGRP and its receptor components within STN in the brainstem and in the spinal cord at C1-level, and shows the possibility of CGRP acting postjunctionally in these areas putatively involved in primary headaches.</p

    Producer Nutritional Quality Controls Ecosystem Trophic Structure

    Get PDF
    Trophic structure, or the distribution of biomass among producers and consumers, determines key ecosystem values, such as the abundance of infectious, harvestable or conservation target species, and the storage and cycling of carbon and nutrients. There has been much debate on what controls ecosystem trophic structure, yet the answer is still elusive. Here we show that the nutritional quality of primary producers controls the trophic structure of ecosystems. By increasing the efficiency of trophic transfer, higher producer nutritional quality results in steeper ecosystem trophic structure, and those changes are more pronounced in terrestrial than in aquatic ecosystems probably due to the more stringent nutritional limitation of terrestrial herbivores. These results explain why ecosystems composed of highly nutritional primary producers feature high consumer productivity, fast energy recycling, and reduced carbon accumulation. Anthropogenic changes in producer nutritional quality, via changes in trophic structure, may alter the values and functions of ecosystems, and those alterations may be more important in terrestrial ecosystems

    Physical activity and depression in adolescents: cross-sectional findings from the ALSPAC cohort

    Get PDF
    Purpose: Few studies have examined the association between physical activity (PA), measured objectively, and adolescent depressive symptoms. The aim of this study was to determine whether there is an association between objective measures of PA (total PA and time spent in moderate and vigorous PA (MVPA)) and adolescent depressive symptoms. Methods: Data on 2,951 adolescents participating in ALSPAC were used. Depressive symptoms were measured using the self-report Mood and Feelings Questionnaire (MFQ) (short version). Measures of PA were based on accelerometry. The association between PA and MFQ scores was modelled using ordinal regression. Results: Adolescents who were more physically active (total PA or minutes of MVPA) had a reduced odds of depressive symptoms [ORadj total PA (tertiles): medium 0.82 (95% CI: 0.69, 0.97); high 0.69 (95% CI: 0.57, 0.83)]; ORadj per 15 min MVPA: 0.92 (95% CI: 0.86, 0.98). In a multivariable model including both total PA and the percentage of time spent in MVPA, total PA was associated with depressive symptoms (ORadj total PA (tertiles): medium 0.82 (95% CI: 0.70, 0.98); high 0.70 (95% CI: 0.58, 0.85) but the percentage of time spent in MVPA was not independently associated with depressive symptoms [ORadj MVPA (tertiles) medium 1.05 (95% CI: 0.88, 1.24), high 0.91 (95% CI: 0.77, 1.09)]. Conclusions: The total amount of PA undertaken was associated with adolescent depressive symptoms, but the amount of time spent in MVPA, once total PA was accounted for, was not. If confirmed in longitudinal studies and randomised controlled trials, this would have important implications for public health messages.Nicola J. Wiles, Anne M. Haase, Debbie A. Lawlor, Andy Ness, Glyn Lewi

    Plakophilin3 Loss Leads to an Increase in PRL3 Levels Promoting K8 Dephosphorylation, Which Is Required for Transformation and Metastasis

    Get PDF
    The desmosome anchors keratin filaments in epithelial cells leading to the formation of a tissue wide IF network. Loss of the desmosomal plaque protein plakophilin3 (PKP3) in HCT116 cells, leads to an increase in neoplastic progression and metastasis, which was accompanied by an increase in K8 levels. The increase in levels was due to an increase in the protein levels of the Phosphatase of Regenerating Liver 3 (PRL3), which results in a decrease in phosphorylation on K8. The increase in PRL3 and K8 protein levels could be reversed by introduction of an shRNA resistant PKP3 cDNA. Inhibition of K8 expression in the PKP3 knockdown clone S10, led to a decrease in cell migration and lamellipodia formation. Further, the K8 PKP3 double knockdown clones showed a decrease in colony formation in soft agar and decreased tumorigenesis and metastasis in nude mice. These results suggest that a stabilisation of K8 filaments leading to an increase in migration and transformation may be one mechanism by which PKP3 loss leads to tumor progression and metastasis
    corecore