18 research outputs found

    Structural correlations in bacterial metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution.</p> <p>Results</p> <p>We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart.</p> <p>Conclusions</p> <p>The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery of the network. This suggests that natural selection and biochemical correlations can act both to diversify and to narrow down metabolic evolution.</p

    On Bubble Generators in Directed Graphs

    Get PDF
    International audienceBubbles are pairs of internally vertex-disjoint (s, t)-paths with applications in the processing of DNA and RNA data. For example, enumerating alternative splicing events in a reference-free context can be done by enumerating all bubbles in a de Bruijn graph built from RNA-seq reads [16]. However, listing and analysing all bubbles in a given graph is usually unfeasible in practice, due to the exponential number of bubbles present in real data graphs. In this paper, we propose a notion of a bubble generator set, i.e. a polynomial-sized subset of bubbles from which all the others can be obtained through the application of a specific symmetric difference operator. This set provides a compact representation of the bubble space of a graph, which can be useful in practice since some pertinent information about all the bubbles can be more conveniently extracted from this compact set. Furthermore, we provide a polynomial-time algorithm to decompose any bubble of a graph into the bubbles of such a generator in a tree-like fashion

    A Family of Tree-Based Generators for Bubbles in Directed Graphs

    Get PDF
    International audienceBubbles are pairs of internally vertex-disjoint (s, t)-paths in a directed graph. In de Bruijn graphs built from reads of RNA and DNA data, bubbles represent interesting biological events, such as alternative splicing (AS) and allelic differences (SNPs and indels). However, the set of all bubbles in a de Bruijn graph built from real data is usually too large to be efficiently enumerated and analysed in practice. In particular, despite significant research done in this area, listing bubbles still remains the main bottleneck for tools that detect AS events in a reference-free context. Recently, in [1] the concept of a bubble generator was introduced as a way for obtaining a compact representation of the bubble space of a graph. Although this generator was quite effective in finding AS events, preliminary experiments showed that it is about 5 times slower than state-of-art methods. In this paper we propose a new family of bubble generators which improve substantially on the previous generator: generators in this new family are about two orders of magnitude faster and are still able to achieve similar precision in identifying AS events. To highlight the practical value of our new generators, we also report some experimental results on a real dataset

    Flux-dependent graphs for metabolic networks

    Get PDF
    Cells adapt their metabolic fluxes in response to changes in the environment. We present a framework for the systematic construction of flux-based graphs derived from organism-wide metabolic networks. Our graphs encode the directionality of metabolic fluxes via edges that represent the flow of metabolites from source to target reactions. The methodology can be applied in the absence of a specific biological context by modelling fluxes probabilistically, or can be tailored to different environmental conditions by incorporating flux distributions computed through constraint-based approaches such as Flux Balance Analysis. We illustrate our approach on the central carbon metabolism of Escherichia coli and on a metabolic model of human hepatocytes. The flux-dependent graphs under various environmental conditions and genetic perturbations exhibit systemic changes in their topological and community structure, which capture the re-routing of metabolic fluxes and the varying importance of specific reactions and pathways. By integrating constraint-based models and tools from network science, our framework allows the study of context-specific metabolic responses at a system level beyond standard pathway descriptions

    Energy expenditure and food consumption of foraging Imperial cormorants in Patagonia, Argentina

    Get PDF
    Energy management during the breeding season is crucial for central place foragers since parents need to feed themselves and their offspring while being spatially and temporally constrained. In this work, we used overall dynamic body acceleration as a measure of activity and also to allude to the foraging energy expenditure of breeding Imperial cormorants Phalacrocorax atriceps. We also analyzed how changes in the time or energy allocated to different activities affected the foraging trip energy expenditure and estimated the daily food requirements of the species. Birds spent 42 % of the total energy flying to and from the feeding areas and 16 % floating at sea. The level of activity underwater was almost 1.5 times higher for females than for males. The most expensive diving phase in terms of rate of energy expenditure was descending though the water column. The total foraging trip energy expenditure was particularly sensitive to variation in the amount of time spent flying. During the breeding season, adult cormorants breeding along the Patagonian coast would consume approximately 10,000 tons of food.Fil: GĂłmez Laich, Agustina Marta. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Nacional PatagĂłnico; ArgentinaFil: Wilson, Rory P.. University of Wales. Institute of Environmental Sustainability. Biological Sciences; Reino UnidoFil: Shepard, Emily L. C.. University of Wales. Institute of Environmental Sustainability. Biological Sciences; Reino UnidoFil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Nacional PatagĂłnico; Argentin
    corecore