266 research outputs found

    Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): Confirmation of null alleles and non-Mendelian segregation ratios

    Get PDF
    Eighteen microsatellite markers were developed for the Crassostrea virginica nuclear genome, including di-, tri-, and tetranucleotide microsatellite repeat regions that included perfect, imperfect, and compound repeat sequences. A reference panel with DNA from the parents and four progeny of 10 full-sib families was used for a preliminary confirmation of polymorphism at these loci and indications of null alleles. Null alleles were discovered at three loci; in two instances, primer redesign enabled their amplification. Two to five representative alleles from each locus were sequenced to ensure that the targeted loci were amplifying. The sequence analysis revealed not only variation in the number of simple sequence repeat units, but also polymorphisms in the microsatellite flanking regions. A total of 3626 bp of combined microsatellite flanking region from the 18 loci was examined, revealing indels as well as nucleotide site substitutions. Overall, 16 indels and 146 substitutions were found with an average of 4.5% polymorphism across all loci. Eight markers were tested on the parents and 39-61 progeny from each of four families for examination of allelic inheritance patterns and genotypic ratios. Twenty-six tests of segregation ratios revealed eight significant departures from expected Mendelian ratios, three of which remained significant after correction for multiple tests. Deviations were observed in both the directions of heterozygote excess and deficiency

    The Case For Sequencing The Pacific Oyster Genome

    Get PDF
    An international community of biologists presents the Pacific oyster Crassostrea gigas as a candidate for genome sequencing. This oyster has global distribution and for the past several years the highest annual production of any freshwater or marine organism (4.2 million metric tons, worth $3.5 billion US). Economic and cultural importance of oysters motivates a great deal of biologic research, which provides a compelling rationale for sequencing an oyster genome. Strong rationales for sequencing the oyster genome also come from contrasts to other genomes: membership in the Lophotrochozoa, an understudied branch of the Eukaryotes and high fecundity, with concomitantly high DNA sequence polymorphism and a population biology that is more like plants than any of the model animals whose genomes have been sequenced to date. Finally, oysters play an important, sentinel role in the estuarine and coastal marine habitats, where most humans live, environmental degradation is substantial, and oysters suffer intense fishing pressures and natural mortalities from disease and stress. Consumption of contaminated oysters can pose risks to human health from infectious diseases. The genome of the Pacific oyster, at IC = 0.89 pg or similar to 824 Mb, ranks in the bottom 12% of genome sizes for the Phylum Mollusca. The biologic and genomic resources available for the Pacific oyster are unparalleled by resources for any other bivalve mollusc or marine invertebrate. Inbred lines have been developed for experimental crosses and genetics research. Use of DNA from inbred lines is proposed as a strategy for reducing the high nucleotide polymorphism, which can interfere with shotgun sequencing approaches. We have moderately dense linkage maps and various genomic and expressed DNA libraries. The value of these existing resources for a broad range of evolutionary and environmental sciences will be greatly leveraged by having a draft genome sequence

    Influence of inflammatory polyarthritis on quantitative heel ultrasound measurements.

    Get PDF
    BACKGROUND: There are few data concerning the impact of inflammatory polyarthritis (IP) on quantitative heel ultrasound (QUS) measurements. The aims of this analysis were i) to determine the influence of IP on QUS measurements at the heel and, ii) among those with IP to determine the influence of disease related factors on these measurements. METHODS: Men and women aged 16 years and over with recent onset IP were recruited to the Norfolk Arthritis Register (NOAR). Individuals with an onset of joint symptoms between 1989 and 1999 were included in this analysis. At the baseline visit subjects underwent a standardised interview and clinical examination with blood taken for rheumatoid factor. A population-based prospective study of chronic disease (EPIC-Norfolk) independently recruited men and women aged 40 to 79 years from the same geographic area between 1993 and 1997. At a follow up assessment between 1998 and 2000 subjects in EPIC-Norfolk were invited to have quantitative ultrasound measurements of the heel (CUBA-Clinical) performed. We compared speed of sound (SOS) and broadband ultrasound attenuation (BUA), in those subjects recruited to NOAR who had ultrasound measurements performed (as part of EPIC-Norfolk) subsequent to the onset of joint symptoms with a group of age and sex matched non-IP controls who had participated in EPIC-Norfolk. Fixed effect linear regression was used to explore the influence of IP on the heel ultrasound parameters (SOS and BUA) so the association could be quantified as the mean difference in BUA and SOS between cases and controls. In those with IP, linear regression was used to examine the association between these parameters and disease related factors. RESULTS: 139 men and women with IP and 278 controls (mean age 63.2 years) were studied. Among those with IP, mean BUA was 76.3 dB/MHz and SOS 1621.8 m/s. SOS was lower among those with IP than the controls (difference = -10.0; 95% confidence interval (CI) -17.4, -2.6) though BUA was similar (difference = -1.2; 95% CI -4.5, +2.1). The difference in SOS persisted after adjusting for body mass index and steroid use. Among those with IP, disease activity as determined by the number of swollen joints at baseline, was associated with a lower SOS. In addition SOS was lower in the subgroup that satisfied the 1987 ACR criteria. By contrast, disease duration, steroid use and HAQ score were not associated with either BUA or SOS. CONCLUSIONS: In this general population derived cohort of individuals with inflammatory polyarthritis there is evidence from ultrasound of a potentially adverse effect on the skeleton. The effect appears more marked in those with active disease.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Influence of arthritis and non-arthritis related factors on areal bone mineral density (BMDa) in women with longstanding inflammatory polyarthritis: a primary care based inception cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this analysis was to determine the relative influence of disease and non-disease factors on areal bone mineral density (BMD<sub>a</sub>) in a primary care based cohort of women with inflammatory polyarthritis.</p> <p>Methods</p> <p>Women aged 16 years and over with recent onset inflammatory polyarthritis were recruited to the Norfolk Arthritis Register (NOAR) between 1990 and 1993. Subjects were examined at both baseline and follow up for the presence of tender, swollen and deformed joints. At the 10<sup>th </sup>anniversary visit, a sub-sample of women were invited to complete a bone health questionnaire and attend for BMD<sub>a </sub>(Hologic, QDR 4000). Linear regression was used to examine the association between BMD<sub>a </sub>with both (i) arthritis-related factors assessed at baseline and the 10<sup>th </sup>anniversary visit and (ii) standard risk factors for osteoporosis. Adjustments were made for age.</p> <p>Results</p> <p>108 women, mean age 58.0 years were studied. Older age, decreasing weight and BMI at follow up were all associated with lower BMD<sub>a </sub>at both the spine and femoral neck. None of the lifestyle factors were linked. Indices of joint damage including 10<sup>th </sup>anniversary deformed joint count and erosive joint count were the arthritis-related variables linked with a reduction in BMD<sub>a </sub>at the femoral neck. By contrast, disease activity as determined by the number of tender and or swollen joints assessed both at baseline and follow up was not linked with BMD<sub>a </sub>at either site.</p> <p>Conclusion</p> <p>Cumulative disease damage was the strongest predictor of reduced femoral bone density. Other disease and lifestyle factors have only a modest influence.</p

    A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles

    Get PDF
    Turtles (Testudinata) are a successful lineage of vertebrates with about 350 extant species that inhabit all major oceans and landmasses with tropical to temperate climates. The rich fossil record of turtles documents the adaptation of various sub- lineages to a broad range of habitat preferences, but a synthetic biogeographic model is still lacking for the group.Results: We herein describe a new species of fossil turtle from the Late Jurassic of Xinjiang, China, Sichuanchelys palatodentata sp. nov., that is highly unusual by plesiomorphically exhibiting palatal teeth. Phylogenetic analysis places the Late Jurassic Sichuanchelys palatodentata in a clade with the Late Cretaceous Mongolochelys efremovi outside crown group Testudines thereby establishing the prolonged presence of a previously unrecognized clade of turtles in Asia, herein named Sichuanchelyidae. In contrast to previous hypotheses, M. efremovi and Kallokibotion bajazidi are not found within Meiolaniformes, a clade that is here reinterpreted as being restricted to Gondwana.Conclusions: A revision of the global distribution of fossil and recent turtle reveals that the three primary lineages of derived, aquatic turtles, including the crown, Paracryptodira, Pan-Pleurodira, and Pan- Cryptodira can be traced back to the Middle Jurassic of Euramerica, Gondwana, and Asia, respectively, which resulted from the primary break up of Pangaea at that time. The two primary lineages of Pleurodira, Pan-Pelomedusoides and Pan-Chelidae, can similarly be traced back to the Cretaceous of northern and southern Gondwana, respectively, which were separated from one another by a large desert zone during that time. The primary divergence of crown turtles was therefore driven by vicariance to the primary freshwater aquatic habitat of these lineages. The temporally persistent lineages of basal turtles, Helochelydridae, Meiolaniformes, Sichuanchelyidae, can similarly be traced back to the Late Mesozoic of Euramerica, southern Gondwana, and Asia. Given the ambiguous phylogenetic relationships of these three lineages, it is unclear if their diversification was driven by vicariance as well, or if they display a vicariance-like pattern. The clean, primary signal apparent among early turtles is secondarily obliterated throughout the Late Cretaceous to Recent by extensive dispersal of continental turtles and by multiple invasions of marine habitats

    Tyrosine Phosphorylation of the E3 Ubiquitin Ligase TRIM21 Positively Regulates Interaction with IRF3 and Hence TRIM21 Activity

    Get PDF
    Patients suffering from Systemic Lupus Erythematous (SLE) have elevated type I interferon (IFN) levels which correlate with disease activity and severity. TRIM21, an autoantigen associated with SLE, has been identified as an ubiquitin E3 ligase that targets the transcription factor IRF3 in order to turn off and limit type I IFN production following detection of viral and bacterial infection by Toll Like Receptors (TLRs). However, how the activity of TRIM21 is regulated downstream of TLRs is unknown. In this study we demonstrate that TRIM21 is tyrosine phosphorylated following TLR3 and TLR4 stimulation, suggesting that its activity is potentially regulated by tyrosine phosphorylation. Using Netphos, we have identified three key tyrosines that are strongly predicted to be phosphorylated, two of which are conserved between the human and murine forms of TRIM21, at residues 343, 388, and 393, all of which have been mutated from tyrosine to phenylalanine (Y343F, Y388F, and Y393F). We have observed that tyrosine phosphorylation of TRIM21 only occurs in the substrate binding PRY/SPRY domain, and that Y393, and to a lesser extent, Y388 are required for TRIM21 to function as a negative regulator of IFN-Ξ² promoter activity. Further studies revealed that mutating Y393 to phenylalanine inhibits the ability of TRIM21 to interact with its substrate, IRF3, thus providing a molecular explanation for the lack of activity of Y393 on the IFN-Ξ² promoter. Our data demonstrates a novel role for tyrosine phosphorylation in regulating the activity of TRIM21 downstream of TLR3 and TLR4. Given the pathogenic role of TRIM21 in systemic autoimmunity, these findings have important implications for the development of novel therapeutics

    Association analysis of PON2 genetic variants with serum paraoxonase activity and systemic lupus erythematosus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low serum paraoxonase (PON) activity is associated with the risk of coronary artery disease, diabetes and systemic lupus erythematosus (SLE). Our prior studies have shown that the <it>PON1</it>/rs662 (p.Gln192Arg), <it>PON1</it>/rs854560 (p.Leu55Met), <it>PON3</it>/rs17884563 and <it>PON3</it>/rs740264 SNPs (single nucleotide polymorphisms) significantly affect serum PON activity. Since <it>PON1, PON2 </it>and <it>PON3 </it>share high degree of structural and functional properties, in this study, we examined the role of <it>PON2 </it>genetic variation on serum PON activity, risk of SLE and SLE-related clinical manifestations in a Caucasian case-control sample.</p> <p>Methods</p> <p><it>PON2 </it>SNPs were selected from HapMap and SeattleSNPs databases by including at least one tagSNP from each bin defined in these resources. A total of nineteen <it>PON2 </it>SNPs were successfully genotyped in 411 SLE cases and 511 healthy controls using pyrosequencing, restriction fragment length polymorphism (RFLP) or TaqMan allelic discrimination methods.</p> <p>Results</p> <p>Our pair-wise linkage disequilibrium (LD) analysis, using an <it>r</it><sup><it>2 </it></sup>cutoff of 0.7, identified 14 <it>PON2 </it>tagSNPs that captured all 19 <it>PON2 </it>variants in our sample, 12 of which were not in high LD with known <it>PON1 </it>and <it>PON3 </it>SNP modifiers of PON activity. Stepwise regression analysis of PON activity, including the known modifiers, identified five <it>PON2 </it>SNPs [rs6954345 (p.Ser311Cys), rs13306702, rs987539, rs11982486, and rs4729189; <it>P </it>= 0.005 to 2.1 Γ— 10<sup>-6</sup>] that were significantly associated with PON activity. We found no association of <it>PON2 </it>SNPs with SLE risk but modest associations were observed with lupus nephritis (rs11981433, rs17876205, rs17876183) and immunologic disorder (rs11981433) in SLE patients (<it>P </it>= 0.013 to 0.042).</p> <p>Conclusions</p> <p>Our data indicate that <it>PON2 </it>genetic variants significantly affect variation in serum PON activity and have modest effects on risk of lupus nephritis and SLE-related immunologic disorder.</p

    The Siblings With Ischemic Stroke Study (SWISS) Protocol

    Get PDF
    BACKGROUND: Family history and twins studies suggest an inherited component to ischemic stroke risk. Candidate gene association studies have been performed but have limited capacity to identify novel risk factor genes. The Siblings With Ischemic Stroke Study (SWISS) aims to conduct a genome-wide scan in sibling pairs concordant or discordant for ischemic stroke to identify novel genetic risk factors through linkage analysis. METHODS: Screening at multiple clinical centers identifies patients (probands) with radiographically confirmed ischemic stroke and a family history of at least 1 living full sibling with stroke. After giving informed consent, without violating privacy among other family members, the proband invites siblings concordant and discordant for stroke to participate. Siblings then contact the study coordinating center. The diagnosis of ischemic stroke in potentially concordant siblings is confirmed by systematic centralized review of medical records. The stroke-free status of potentially discordant siblings is confirmed by validated structured telephone interview. Blood samples for DNA analysis are taken from concordant sibling pairs and, if applicable, from 1 discordant sibling. Epstein-Barr virus-transformed lymphoblastoid cell lines are created, and a scan of the human genome is planned. DISCUSSION: Conducting adequately powered genomics studies of stroke in humans is challenging because of the heterogeneity of the stroke phenotype and the difficulty of obtaining DNA samples from clinically well-characterized members of a cohort of stroke pedigrees. The multicentered design of this study is intended to efficiently assemble a cohort of ischemic stroke pedigrees without invoking community consent or using cold-calling of pedigree members

    Natural Disease Resistance in Threatened Staghorn Corals

    Get PDF
    Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD), and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49) are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. Β© 2012 Macmillan Publishers Limited. All rights reserved
    • …
    corecore