381 research outputs found

    Fourier Magnetic Imaging with Nanoscale Resolution and Compressed Sensing Speed-up using Electronic Spins in Diamond

    Full text link
    Optically-detected magnetic resonance using Nitrogen Vacancy (NV) color centres in diamond is a leading modality for nanoscale magnetic field imaging, as it provides single electron spin sensitivity, three-dimensional resolution better than 1 nm, and applicability to a wide range of physical and biological samples under ambient conditions. To date, however, NV-diamond magnetic imaging has been performed using real space techniques, which are either limited by optical diffraction to 250 nm resolution or require slow, point-by-point scanning for nanoscale resolution, e.g., using an atomic force microscope, magnetic tip, or super-resolution optical imaging. Here we introduce an alternative technique of Fourier magnetic imaging using NV-diamond. In analogy with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic field gradients to phase-encode spatial information on NV electronic spins in wavenumber or k-space followed by a fast Fourier transform to yield real-space images with nanoscale resolution, wide field-of-view (FOV), and compressed sensing speed-up.Comment: 31 pages, 10 figure

    Physicians Infrequently Adhere to Hepatitis Vaccination Guidelines for Chronic Liver Disease

    Get PDF
    Background and Goals:Hepatitis A (HAV) and hepatitis B (HBV) vaccination in patients with chronic liver disease is an accepted standard of care. We determined HAV and HBV vaccination rates in a tertiary care referral hepatology clinic and the impact of electronic health record (EHR)-based reminders on adherence to vaccination guidelines.Methods:We reviewed the records of 705 patients with chronic liver disease referred to our liver clinic in 2008 with at least two follow-up visits during the subsequent year. Demographics, referral source, etiology, and hepatitis serology were recorded. We determined whether eligible patients were offered vaccination and whether patients received vaccination. Barriers to vaccination were determined by a follow-up telephone interview.Results:HAV and HBV serologic testing prior to referral and at the liver clinic were performed in 14.5% and 17.7%; and 76.7% and 74% patients, respectively. Hepatologists recommended vaccination for HAV in 63% and for HBV in 59.7% of eligible patients. Patient demographics or disease etiology did not influence recommendation rates. Significant variability was observed in vaccination recommendation amongst individual providers (30-98.6%), which did not correlate with the number of patients seen by each physician. Vaccination recommendation rates were not different for Medicare patients with hepatitis C infection for whom a vaccination reminder was automatically generated by the EHR. Most patients who failed to get vaccination after recommendation offered no specific reason for noncompliance; insurance was a barrier in a minority.Conclusions:Hepatitis vaccination rates were suboptimal even in an academic, sub-speciality setting, with wide-variability in provider adherence to vaccination guidelines. © 2013 Thudi et al

    Multi-class Model Fitting by Energy Minimization and Mode-Seeking

    Get PDF
    We propose a general formulation, called Multi-X, for multi-class multi-instance model fitting - the problem of interpreting the input data as a mixture of noisy observations originating from multiple instances of multiple classes. We extend the commonly used alpha-expansion-based technique with a new move in the label space. The move replaces a set of labels with the corresponding density mode in the model parameter domain, thus achieving fast and robust optimization. Key optimization parameters like the bandwidth of the mode seeking are set automatically within the algorithm. Considering that a group of outliers may form spatially coherent structures in the data, we propose a cross-validation-based technique removing statistically insignificant instances. Multi-X outperforms significantly the state-of-the-art on publicly available datasets for diverse problems: multiple plane and rigid motion detection; motion segmentation; simultaneous plane and cylinder fitting; circle and line fitting

    Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis

    Get PDF
    Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products

    The impact of solvent characteristics on performance and process stability of printed carbon resistive materials

    Get PDF
    Carbon conductive pastes deposited by screen printing are used in many commercial applications including sensors, PCB, batteries, and PV, and as such represent an important value-added coating. An experimental investigation was carried out into the role of the solvent on the drying characteristics, conductivity, and process consistency in screen printed carbon pastes. Four materials with solvent boiling points between 166 and 219°C were deposited at film thickness between 6 and 16 μm, and the sheet resistance and film thickness were measured after successive passes through an industrial dryer operating with an air temperature of 155°C. Sheet resistances of 14 Ω/sq. were obtained with the thicker films while thinner films produced a sheet resistance of 46 Ω/sq. Thinner films achieved a stable resistivity within a 2.5-min residence time, while the thicker films required a residence time in excess of 12.5 min to achieve a stable resistivity. As well as prolonging drying times, the higher boiling point increased the resistivity of the cured film. It is postulated that the lower resistance of the faster drying materials is a result of film stressing increasing inter particle contact. Process models indicate that multiple thin layers are a more efficient means of manufacture for the process parameters examined

    An Introduction to EEG Source Analysis with an illustration of a study on Error-Related Potentials

    No full text
    International audienceOver the last twenty years blind source separation (BSS) has become a fundamental signal processing tool in the study of human electroencephalography (EEG), other biological data, as well as in many other signal processing domains such as speech, images, geophysics and wireless communication (Comon and Jutten, 2010). Without relying on head modeling BSS aims at estimating both the waveform and the scalp spatial pattern of the intracranial dipolar current responsible of the observed EEG, increasing the sensitivity and specificity of the signal received from the electrodes on the scalp. This chapter begins with a short review of brain volume conduction theory, demonstrating that BSS modeling is grounded on current physiological knowledge. We then illustrate a general BSS scheme requiring the estimation of second-order statistics (SOS) only. A simple and efficient implementation based on the approximate joint diagonalization of covariance matrices (AJDC) is described. The method operates in the same way in the time or frequency domain (or both at the same time) and is capable of modeling explicitly physiological and experimental source of variations with remarkable flexibility. Finally, we provide a specific example illustrating the analysis of a new experimental study on error-related potentials

    eLearning resources to supplement postgraduate neurosurgery training.

    Get PDF
    BACKGROUND: In an increasingly complex and competitive professional environment, improving methods to educate neurosurgical residents is key to ensure high-quality patient care. Electronic (e)Learning resources promise interactive knowledge acquisition. We set out to give a comprehensive overview on available eLearning resources that aim to improve postgraduate neurosurgical training and review the available literature. MATERIAL AND METHODS: A MEDLINE query was performed, using the search term "electronic AND learning AND neurosurgery". Only peer-reviewed English-language articles on the use of any means of eLearning to improve theoretical knowledge in postgraduate neurosurgical training were included. Reference lists were crosschecked for further relevant articles. Captured parameters were the year, country of origin, method of eLearning reported, and type of article, as well as its conclusion. eLearning resources were additionally searched for using Google. RESULTS: Of n = 301 identified articles by the MEDLINE search, n = 43 articles were analysed in detail. Applying defined criteria, n = 28 articles were excluded and n = 15 included. Most articles were generated within this decade, with groups from the USA, the UK and India having a leadership role. The majority of articles reviewed existing eLearning resources, others reported on the concept, development and use of generated eLearning resources. There was no article that scientifically assessed the effectiveness of eLearning resources (against traditional learning methods) in terms of efficacy or costs. Only one article reported on satisfaction rates with an eLearning tool. All authors of articles dealing with eLearning and the use of new media in neurosurgery uniformly agreed on its great potential and increasing future use, but most also highlighted some weaknesses and possible dangers. CONCLUSION: This review found only a few articles dealing with the modern aspects of eLearning as an adjunct to postgraduate neurosurgery training. Comprehensive eLearning platforms offering didactic modules with clear learning objectives are rare. Two decades after the rise of eLearning in neurosurgery, some promising solutions are readily available, but the potential of eLearning has not yet been sufficiently exploited

    The Circadian Clock Protein Timeless Regulates Phagocytosis of Bacteria in Drosophila

    Get PDF
    Survival of bacterial infection is the result of complex host-pathogen interactions. An often-overlooked aspect of these interactions is the circadian state of the host. Previously, we demonstrated that Drosophila mutants lacking the circadian regulatory proteins Timeless (Tim) and Period (Per) are sensitive to infection by S. pneumoniae. Sensitivity to infection can be mediated either by changes in resistance (control of microbial load) or tolerance (endurance of the pathogenic effects of infection). Here we show that Tim regulates resistance against both S. pneumoniae and S. marcescens. We set out to characterize and identify the underlying mechanism of resistance that is circadian-regulated. Using S. pneumoniae, we found that resistance oscillates daily in adult wild-type flies and that these oscillations are absent in Tim mutants. Drosophila have at least three main resistance mechanisms to kill high levels of bacteria in their hemolymph: melanization, antimicrobial peptides, and phagocytosis. We found that melanization is not circadian-regulated. We further found that basal levels of AMP gene expression exhibit time-of-day oscillations but that these are Tim-independent; moreover, infection-induced AMP gene expression is not circadian-regulated. We then show that phagocytosis is circadian-regulated. Wild-type flies exhibit up-regulated phagocytic activity at night; Tim mutants have normal phagocytic activity during the day but lack this night-time peak. Tim appears to regulate an upstream event in phagocytosis, such as bacterial recognition or activation of phagocytic hemocytes. Interestingly, inhibition of phagocytosis in wild type flies results in survival kinetics similar to Tim mutants after infection with S. pneumoniae. Taken together, these results suggest that loss of circadian oscillation of a specific immune function (phagocytosis) can have significant effects on long-term survival of infection
    • …
    corecore