10 research outputs found
Understanding unequal ageing: towards a synthesis of intersectionality and life course analyses
Intersectionality has received an increasing amount of attention in health inequalities research in recent years. It suggests that treating social characteristics separately—mainly age, gender, ethnicity, and socio-economic position—does not match the reality that people simultaneously embody multiple characteristics and are therefore potentially subject to multiple forms of discrimination. Yet the intersectionality literature has paid very little attention to the nature of ageing or the life course, and gerontology has rarely incorporated insights from intersectionality. In this paper, we aim to illustrate how intersectionality might be synthesised with a life course perspective to deliver novel insights into unequal ageing, especially with respect to health. First we provide an overview of how intersectionality can be used in research on inequality, focusing on intersectional subgroups, discrimination, categorisation, and individual heterogeneity. We cover two key approaches—the use of interaction terms in conventional models and multilevel models which are particularly focussed on granular subgroup differences. In advancing a conceptual dialogue with the life course perspective, we discuss the concepts of roles, life stages, transitions, age/cohort, cumulative disadvantage/advantage, and trajectories. We conclude that the synergies between intersectionality and the life course hold exciting opportunities to bring new insights to unequal ageing and its attendant health inequalities
Iron Limitation Modulates Ocean Acidification Effects on Southern Ocean Phytoplankton Communities
The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect