12 research outputs found

    Self-organization of synthetic cholesteryl oligoethyleneglycol glycosides in water

    No full text
    International audienceLectin−sugar recognition systems are of interest in the pharmaceutical field, especially for the development of drug carriers, tailored for selective delivery. This paper deals with the anhydrous and aqueous self-organization properties of a synthetic cholesteryl oligoethyleneglycol glycoside with the aim of their incorporation in liposomes. Successive phases (lamellar, R3m, Im3m, micelles) have been described depending on water content and temperature. As a result of the presence of sugar residues and their hydration ability, this glycolipid shows a large range of packing parameter with increasing water content. However, because of oligoethyleneglycol spacer, a slight dehydration has been observed with increasing temperature from 20 to 60 °C

    Novel Application of MRI Technique Combined with Flow-Through Cell Dissolution Apparatus as Supportive Discriminatory Test for Evaluation of Controlled Release Formulations

    No full text
    Dissolution studies cannot distinguish phenomena occurring inside the dosage forms when studying formulation with similar dissolution profiles—such formulations can behave differently when considering their physical changes. The application of flow-through dissolution apparatus integrated with magnetic resonance imaging (MRI) system for discriminative evaluation of controlled release dosage forms with similar dissolution profiles was presented. Hydrodynamically balanced systems (HBS) containing l-dopa and various grades hydroxypropyl methylcelluloses were prepared. The dissolution studies of l-dopa were performed at high field (4.7 T) MR system with MR-compatible flow-through cell. MRI was done with 0.14 × 0.14 × 1-mm spatial resolution and temporal resolution of 10 min to record changes of HBS parameters during dissolution in 0.1 M HCl. Structural and geometrical changes were evaluated using the following parameters: total area of HBS cross-section, its Feret’s diameter, perimeter and circularity, area of hydrogel layer, and “dry core” area. While the dissolution profiles of l-dopa were similar, the image analysis revealed differences in the structural and geometrical changes of the HBS. The mechanism of drug release from polymeric matrices is a result of synergy of several different phenomena occurring during dissolution and may differ between formulations, yet giving similar dissolution profiles. A multivariate analysis was performed to create a model taking into account dissolution data, data from MRI, information about chemical structure, and polymer viscosity. It provided a single model for all the formulations which was confirmed to be competent. The presented method has merit as a potential Process Analytical Technology tool

    Stomach-Specific Controlled Release Gellan Beads of Acid-Soluble Drug Prepared by Ionotropic Gelation Method

    No full text
    The purpose of the present work was the development and evaluation of stomach-specific controlled release mucoadhesive drug delivery system prepared by ionotropic gelation of gellan beads, containing acid-soluble drug amoxicillin trihydrate, using 32 factorial design with concentration of gellan gum and quantity of drug as variables. The study showed that beads prepared in alkaline cross-linking medium have higher entrapment efficiency than the acidic cross-linking medium. The entrapment efficiency was in the range of 32% to 46% w/w in acidic medium, which increased up to 60% to 90% w/w in alkaline medium. Batches with lowest, medium, and highest drug entrapment were subjected to chitosan coating to form a polyelectrolyte complex film. As polymer concentration increases, entrapment efficiency and particle size increases. Scanning electron microscopy revealed spherical but rough surface due to leaching of drug in acidic cross-linking solution, dense spherical structure in alkaline cross-linking solution, and rough surface of chitosan-coated beads with minor wrinkles. The in vitro drug release up to 7 h in a controlled manner following the Peppas model (r = 0.9998). In vitro and in vivo mucoadhesivity study showed that beads have good mucoadhesivity and more than 85% beads remained adhered to stomach mucosa of albino rat even after 7 h. In vitro growth inhibition study showed complete eradication of Helicobacter pylori. These results indicate that stomach-specific controlled release mucoadhesive system of amoxicillin gellan beads may be useful in H. pylori treatment

    Development and Evaluation of Sustained Release Gastroretentive Minimatrices for Effective Treatment of H. pylori Infection

    No full text
    In the present work, sustained release gastroretentive minimatrices of amoxicillin have been designed and optimized using central composite design. Effect of amount of xanthan gum, rate controlling polymers (HPMC K100M CR/PEO coagulant (1:1)), carbopol 974P, and gas generating couple (sodium bicarbonate/citric acid (3:1)) was studied on dependent (response) variables, i.e., buoyancy lag time, drug release at 1 h, time required for 95% drug release, swelling index, and bioadhesive strength. Minimatrices were prepared by non aqueous granulation method using solution of PVP K30 in isopropyl alcohol. All the formulations were found to contain 99.2% to 100.9% of amoxicillin per minimatrix. Optimum formulation (Formulation number AGT09) containing high level of the independent variables was having buoyancy lag time of 7 min and drug release at 1 h was 32.5%. It required 9.39 h for 95% drug release while swelling index and bioadhesive strength were 341 and 17.9 dyn/cm2, respectively. This formulation was said to be optimum because it has minimum buoyancy lag time, requires maximum time for 95% drug release, and has higher bioadhesive capabilities. In vitro results of an optimized formulation indicate its sustained drug release and gastric retention capability, which may be very useful for effective treatment of H. pylori infection

    Decades of research in drug targeting using gastroretentive drug delivery systems for antihypertensive therapy

    No full text
    ABSTRACT The limitations in absorption of drugs with narrow absorption window, or those unstable in the intestinal pH or those exhibiting low solubility at high pH are primary candidates for gastroretentive drug delivery systems (GRDDS). The delivery system has been widely explored for its commercial potential for a wide variety of therapeutic agents. GRDDS offer clinical therapeutics for acute and chronic management. Hypertension is a chronic disease that requires long term treatment and its management by patient compliant dosage forms would be clinically useful. Antihypertensives belonging to different classes have proved good candidates for the formulation of GRDDS. The review aims to discuss various GRDDS researched for antihypertensive drugs to increase the gastric residing time, bioavailability, henceforth to reduce the dose of the drug, dosing frequency and increase patient compliance. It also explores various marketed products and the patents filed/granted for GRRDS of antihypertensives. The GRDDS investigated include effervescent and non-effervescent floating drug delivery systems, swelling and expanding systems and bio/mucoadhesive systems. Many other systems that provided research platforms include high density systems, raft forming systems and osmotic delivery systems. In clinical context, wherein combination of antihypertensives is indicated, dual release delivery systems may also be explored
    corecore