47 research outputs found

    Burden of childhood-onset arthritis

    Get PDF
    Juvenile arthritis comprises a variety of chronic inflammatory diseases causing erosive arthritis in children, often progressing to disability. These children experience functional impairment due to joint and back pain, heel pain, swelling of joints and morning stiffness, contractures, pain, and anterior uveitis leading to blindness. As children who have juvenile arthritis reach adulthood, they face possible continuing disease activity, medication-associated morbidity, and life-long disability and risk for emotional and social dysfunction. In this article we will review the burden of juvenile arthritis for the patient and society and focus on the following areas: patient disability; visual outcome; other medical complications; physical activity; impact on HRQOL; emotional impact; pain and coping; ambulatory visits, hospitalizations and mortality; economic impact; burden on caregivers; transition issues; educational occupational outcomes, and sexuality

    Variable alterations of the microbiota, without metabolic or immunological change, following faecal microbiota transplantation in patients with chronic pouchitis

    Get PDF
    © 2015 The Authors. Published by Springer Nature. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/srep12955Faecal microbiota transplantation (FMT) is effective in the treatment of Clostridium difficile infection, where efficacy correlates with changes in microbiota diversity and composition. The effects of FMT on recipient microbiota in inflammatory bowel diseases (IBD) remain unclear. We assessed the effects of FMT on microbiota composition and function, mucosal immune response, and clinical outcome in patients with chronic pouchitis. Eight patients with chronic pouchitis (current PDAI ‰7) were treated with FMT via nasogastric administration. Clinical activity was assessed before and four weeks following FMT. Faecal coliform antibiotic sensitivities were analysed, and changes in pouch faecal and mucosal microbiota assessed by 16S rRNA gene pyrosequencing and 1 H NMR spectroscopy. Lamina propria dendritic cell phenotype and cytokine profiles were assessed by flow cytometric analysis and multiplex assay. Following FMT, there were variable shifts in faecal and mucosal microbiota composition and, in some patients, changes in proportional abundance of species suggestive of a 'healthier' pouch microbiota. However, there were no significant FMT-induced metabolic or immunological changes, or beneficial clinical response. Given the lack of clinical response following FMT via a single nasogastric administration our results suggest that FMT/bacteriotherapy for pouchitis patients requires further optimisation.Published versio

    Clostridium difficile infection.

    Get PDF
    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota

    A middle Eocene carbon cycle conundrum

    No full text
    The Middle Eocene Climatic Optimum (MECO) was an approximately 500,000-year-long episode of widespread ocean–atmosphere warming about 40 million years ago, superimposed on a long-term middle Eocene cooling trend. It was marked by a rise in atmospheric CO2 concentrations, biotic changes and prolonged carbonate dissolution in the deep ocean. However, based on carbon cycle theory, a rise in atmospheric CO2 and warming should have enhanced continental weathering on timescales of the MECO. This should have in turn increased ocean carbonate mineral saturation state and carbonate burial in deep-sea sediments, rather than the recorded dissolution. We explore several scenarios using a carbon cycle model in an attempt to reconcile the data with theory, but these simulations confirm the problem. The model only produces critical MECO features when we invoke a sea-level rise, which redistributes carbonate burial from deep oceans to continental shelves and decreases shelf sediment weathering. Sufficient field data to assess this scenario is currently lacking. We call for an integrated approach to unravel Earth system dynamics during carbon cycle variations that are of intermediate timescales (several hundreds of thousands of years), such as the MECO
    corecore