17 research outputs found

    發作性血色素尿症ニ就テ

    Get PDF
    The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors

    Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel

    No full text
    The human intermediate-conductance, Ca2+-activated K+ channel (hIK) was identified by searching the expressed sequence tag database. hIK was found to be identical to two recently cloned K+ channels, hSK4 and hIK1. RNA dot blot analysis showed a widespread tissue expression, with the highest levels in salivary gland, placenta, trachea, and lung. With use of fluorescent in situ hybridization and radiation hybrid mapping, hIK mapped to chromosome 19q13.2 in the same region as the disease Diamond-Blackfan anemia. Stable expression of hIK in HEK-293 cells revealed single Ca2+-activated Kt channels exhibiting weak inward rectification (30 and 11 pS at -100 and +100 mV, respectively). Whole cell recordings showed a noninactivating, inwardly rectifying K+ conductance. Ionic selectivity estimated from bi-ionic reversal potentials gave the permeability (P-K/P-X) sequence K+ = Rb+ (1.0) > Cs+ (10.4) much greater than Na+, Li+, N-methyl-D-glucamine (>51). NH4+ blocked the channel completely. hIK was blocked by the classical inhibitors of the Gardos channel charybdotoxin (IC50 28 nM) and clotrimazole (IC50 153 nM) as well as by nitrendipine (IC50 27 nM), Stichodactyla toxin (IC50 291 nM), margatoxin (IC50 459 nM), miconazole (IC50 785 nM), econazole (IC50 2.4 mu M), and cetiedil (IC50 79 mu M) Finally, 1-ethyl-2-benzimidazolinone, an opener of the T84 cell IK channel, activated hIK with an EC50 Of 74 mu M

    Structural mapping of GABRB3 variants reveals genotype–phenotype correlations

    No full text
    Purpose: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype–phenotype correlations. Methods: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. Results: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. Conclusion: These genotype–phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences

    Zolpidem is a potent stoichiometry-selective modulator of α1β3 GABAA receptors: evidence of a novel benzodiazepine site in the α1-α1 interface

    Get PDF
    Zolpidem is not a typical GABA(A) receptor hypnotic. Unlike benzodiazepines, zolpidem modulates tonic GABA currents in the rat dorsal motor nucleus of the vagus, exhibits residual effects in mice lacking the benzodiazepine binding site, and improves speech, cognitive and motor function in human patients with severe brain injury. The receptor by which zolpidem mediates these effects is not known. In this study we evaluated binary α1β3 GABA(A) receptors in either the 3α1:2β3 or 2α1:3β3 subunit stoichiometry, which differ by the existence of either an α1-α1 interface, or a β3-β3 interface, respectively. Both receptor stoichiometries are readily expressed in Xenopus oocytes, distinguished from each other by using GABA, zolpidem, diazepam and Zn(2+). At the 3α1:2β3 receptor, clinically relevant concentrations of zolpidem enhanced GABA in a flumazenil-sensitive manner. The efficacy of diazepam was significantly lower compared to zolpidem. No modulation by either zolpidem or diazepam was detected at the 2α1:3β3 receptor, indicating that the binding site for zolpidem is at the α1-α1 interface, a site mimicking the classical α1-γ2 benzodiazepine site. Activating α1β3 (3α1:2β3) receptors may, in part, mediate the physiological effects of zolpidem observed under distinct physiological and clinical conditions, constituting a potentially attractive drug target
    corecore