9 research outputs found

    Characterization of a pneumococcal meningitis mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>S. pneumoniae </it>is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation.</p> <p>Methods</p> <p>Adult mice (C57BL/6) were inoculated in the cisterna magna with increasing doses of <it>S. pneumoniae </it>serotype 3 colony forming units (CFU; n = 24, 10<sup>4</sup>, 10<sup>5</sup>, 10<sup>6 </sup>and 10<sup>7 </sup>CFU) and survival studies were performed. Cerebrospinal fluid (CSF), brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 10<sup>4 </sup>CFU <it>S. pneumoniae </it>serotype 3 and sacrificed at 6 (n = 6) and 30 hours (n = 6). Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex<sup>Âź</sup>) in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies.</p> <p>Results</p> <p>Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 10<sup>4</sup>, 56 hrs; 10<sup>5</sup>, 38 hrs, 10<sup>6</sup>, 28 hrs. 10<sup>7</sup>, 24 hrs). Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 10<sup>4 </sup>CFU of <it>S. pneumoniae</it>, blood levels of KC, IL6, MIP-2 and IFN- Îł were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1ÎČ and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively.</p> <p>Conclusion</p> <p>We have developed and validated a murine model of pneumococcal meningitis.</p

    RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation

    Get PDF
    Background: A gap exists in our mechanistic understanding of how genetic and environmental risk factors converge at the molecular level to result in the emergence of autism symptoms. We compared blood-based gene expression signatures in identical twins concordant and discordant for autism spectrum condition (ASC) to differentiate genetic and environmentally driven transcription differences, and establish convergent evidence for biological mechanisms involved in ASC. Methods: Genome-wide gene expression data were generated using RNA-seq on whole blood samples taken from 16 pairs of monozygotic (MZ) twins and seven twin pair members (39 individuals in total), who had been assessed for ASC and autism traits at age 12. Differential expression (DE) analyses were performed between (a) affected and unaffected subjects (N = 36) and (b) within discordant ASC MZ twin pairs (total N = 11) to identify environmental-driven DE. Gene set enrichment and pathway testing was performed on DE gene lists. Finally, an integrative analysis using DNA methylation data aimed to identify genes with consistent evidence for altered regulation in cis. Results: In the discordant twin analysis, three genes showed evidence for DE at FDR < 10%: IGHG4, EVI2A and SNORD15B. In the case-control analysis, four DE genes were identified at FDR<10% including IGHG4, PRR13P5, DEPDC1B, and ZNF501. We find enrichment for DE of genes curated in the SFARI human gene database. Pathways showing evidence of enrichment included those related to immune cell signalling and immune response, transcriptional control and cell cycle/proliferation. Integrative methylomic and transcriptomic analysis identified a number of genes showing suggestive evidence for cis dysregulation. Limitations: Identical twins stably discordant for ASC are rare, and as such the sample size was limited and constrained to the use of peripheral blood tissue for transcriptomic and methylomic profiling. Given these primary limitations, we focused on transcript-level analysis. Conclusions: Using a cohort of ASC discordant and concordant MZ twins, we add to the growing body of transcriptomic-based evidence for an immune-based component in the molecular aetiology of ASC. Whilst the sample size was limited, the study demonstrates the utility of the discordant MZ twin design combined with multi-omics integration for maximising the potential to identify disease-associated molecular signals

    The continuing value of twin studies in the omics era

    No full text
    The classical twin study has been a powerful heuristic in biomedical, psychiatric and behavioural research for decades. Twin registries worldwide have collected biological material and longitudinal phenotypic data on tens of thousands of twins, providing a valuable resource for studying complex phenotypes and their underlying biology. In this Review, we consider the continuing value of twin studies in the current era of molecular genetic studies. We conclude that classical twin methods combined with novel technologies represent a powerful approach towards identifying and understanding the molecular pathways that underlie complex traits. © 2012 Macmillan Publishers Limited. All rights reserved
    corecore