41 research outputs found

    A Lifelogging Platform Towards Detecting Negative Emotions in Everyday Life using Wearable Devices

    Get PDF
    Repeated experiences of negative emotions, such as stress, anger or anxiety, can have long-term consequences for health. These episodes of negative emotion can be associated with inflammatory changes in the body, which are clinically relevant for the development of disease in the long-term. However, the development of effective coping strategies can mediate this causal chain. The proliferation of ubiquitous and unobtrusive sensor technology supports an increased awareness of those physiological states associated with negative emotion and supports the development of effective coping strategies. Smartphone and wearable devices utilise multiple on-board sensors that are capable of capturing daily behaviours in a permanent and comprehensive manner, which can be used as the basis for self-reflection and insight. However, there are a number of inherent challenges in this application, including unobtrusive monitoring, data processing, and analysis. This paper posits a mobile lifelogging platform that utilises wearable technology to monitor and classify levels of stress. A pilot study has been undertaken with six participants, who completed up to ten days of data collection. During this time, they wore a wearable device on the wrist during waking hours to collect instances of heart rate (HR) and Galvanic Skin Resistance (GSR). Preliminary data analysis was undertaken using three supervised machine learning algorithms: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Decision Tree (DT). An accuracy of 70% was achieved using the Decision Tree algorithm

    Bioinformatics and Medicine in the Era of Deep Learning

    Get PDF
    Many of the current scientific advances in the life sciences have their origin in the intensive use of data for knowledge discovery. In no area this is so clear as in bioinformatics, led by technological breakthroughs in data acquisition technologies. It has been argued that bioinformatics could quickly become the field of research generating the largest data repositories, beating other data-intensive areas such as high-energy physics or astroinformatics. Over the last decade, deep learning has become a disruptive advance in machine learning, giving new live to the long-standing connectionist paradigm in artificial intelligence. Deep learning methods are ideally suited to large-scale data and, therefore, they should be ideally suited to knowledge discovery in bioinformatics and biomedicine at large. In this brief paper, we review key aspects of the application of deep learning in bioinformatics and medicine, drawing from the themes covered by the contributions to an ESANN 2018 special session devoted to this topic

    The Coming of Age of Interpretable and Explainable Machine Learning Models

    Get PDF
    Machine learning-based systems are now part of a wide array of real-world applications seamlessly embedded in the social realm. In the wake of this realisation, strict legal regulations for these systems are currently being developed, addressing some of the risks they may pose. This is the coming of age of the interpretability and explainability problems in machine learning-based data analysis, which can no longer be seen just as an academic research problem. In this tutorial, associated to ESANN 2021 special session on “Interpretable Models in Machine Learning and Explainable Artificial Intelligence”, we discuss explainable and interpretable machine learning as post-hoc and ante-hoc strategies to address these problems and highlight several aspects related to them, including their assessment. The contributions accepted for the session are then presented in this contex

    The partial response SVM

    Get PDF
    We introduce a probabilistic algorithm for binary classification based on the SVM through the application of the ANOVA decomposition for multivariate functions to express the logit of the Platt estimate of the posterior probability as a non-redundant sum of functions of fewer variables (partial responses) followed by feature selection with the Lasso. The partial response SVM (prSVM) is compared with previous interpretable models of the SVM. Its accuracy and stability are demonstrated with real-world data sets

    How to Open a Black Box Classifier for Tabular Data

    Get PDF
    A lack of transparency in machine learning models can limit their application. We show that analysis of variance (ANOVA) methods extract interpretable predictive models from them. This is possible because ANOVA decompositions represent multivariate functions as sums of functions of fewer variables. Retaining the terms in the ANOVA summation involving functions of only one or two variables provides an efficient method to open black box classifiers. The proposed method builds generalised additive models (GAMs) by application of L1 regularised logistic regression to the component terms retained from the ANOVA decomposition of the logit function. The resulting GAMs are derived using two alternative measures, Dirac and Lebesgue. Both measures produce functions that are smooth and consistent. The term partial responses in structured models (PRiSM) describes the family of models that are derived from black box classifiers by application of ANOVA decompositions. We demonstrate their interpretability and performance for the multilayer perceptron, support vector machines and gradient-boosting machines applied to synthetic data and several real-world data sets, namely Pima Diabetes, German Credit Card, and Statlog Shuttle from the UCI repository. The GAMs are shown to be compliant with the basic principles of a formal framework for interpretability

    Enhanced survival prediction using explainable artificial intelligence in heart transplantation.

    Get PDF
    The most limiting factor in heart transplantation is the lack of donor organs. With enhanced prediction of outcome, it may be possible to increase the life-years from the organs that become available. Applications of machine learning to tabular data, typical of clinical decision support, pose the practical question of interpretation, which has technical and potential ethical implications. In particular, there is an issue of principle about the predictability of complex data and whether this is inherent in the data or strongly dependent on the choice of machine learning model, leading to the so-called accuracy-interpretability trade-off. We model 1-year mortality in heart transplantation data with a self-explaining neural network, which is benchmarked against a deep learning model on the same development data, in an external validation study with two data sets: (1) UNOS transplants in 2017-2018 (n = 4750) for which the self-explaining and deep learning models are comparable in their AUROC 0.628 [0.602,0.654] cf. 0.635 [0.609,0.662] and (2) Scandinavian transplants during 1997-2018 (n = 2293), showing good calibration with AUROCs of 0.626 [0.588,0.665] and 0.634 [0.570, 0.698], respectively, with and without missing data (n = 982). This shows that for tabular data, predictive models can be transparent and capture important nonlinearities, retaining full predictive performance

    Stair negotiation behaviour of older individuals: Do step dimensions matter?

    Get PDF
    Stair falls are a major health problem for older people. Most studies on identification of stair fall risk factors are limited to staircases set in given step dimensions. However, it remains unknown whether the conclusions drawn would still apply if the dimensions had been changed to represent more challenging or easier step dimensions encountered in domestic and public buildings. The purpose was to investigate whether the self-selected biomechanical stepping behaviours are maintained when the dimensions of a staircase are altered. Sixty-eight older adults (>65 years) negotiated a seven-step staircase set in two step dimensions (shallow staircase: rise 15 cm, going 28 cm; steep staircase: rise 20 cm, going 25 cm). Six biomechanical outcome measures indicative of stair fall risk were measured. K-means clustering profiled the overall stair-negotiating behaviour and cluster profiles were calculated. A Cramer's V measured the degree of association in membership between clusters. The cluster profiles revealed that the biomechanically risky and conservative factors that characterized the overall behaviour in the clusters did not differ for the majority of older adults between staircases for ascent and descent. A strong association of membership between the clusters on the shallow staircase and the steep staircase was found for stair ascent (Cramer's V: 0.412, p < 0.001) and descent (Cramer's V: 0.380, p = 0.003). The findings indicate that manipulating the demand of the task would not affect the underpinning mechanism of a potential stair fall. Therefore, for most individuals, detection of stair fall risk might not require testing using a staircase with challenging step dimensions

    A novel multivariate approach for biomechanical profiling of stair negotiation.

    Get PDF
    Stair falls, especially during stair descent, are a major problem for older people. Stair fall risk has typically been assessed by quantifying mean differences between subject groups (e.g. older vs. younger individuals) for a number of biomechanical parameters individually indicative of risk, e.g., a reduced foot clearance with respect to the stair edge, which increases the chances of a trip. This approach neglects that individuals within a particular group may also exhibit other concurrent conservative strategies that could reduce the overall risk for a fall, e.g. a decreased variance in foot clearance. The purpose of the present study was to establish a multivariate approach that characterises the overall stepping behaviour of an individual. Twenty-five younger adults (age: 24.5 ± 3.3 y) and 70 older adults (age: 71.1 ± 4.1 y) descended a custom-built instrumented seven-step staircase at their self-selected pace in a step-over-step manner without using the handrails. Measured biomechanical parameters included: 1) Maximal centre of mass angular acceleration, 2) Foot clearance, 3) Proportion of foot length in contact with stair, 4) Required coefficient of friction, 5) Cadence, 6) Variance of these parameters. As a conventional analysis, a one-way ANOVA followed by Bonferroni post-hoc testing was used to identify differences between younger adults, older fallers and non-fallers. To examine differences in overall biomechanical stair descent behaviours between individuals, k-means clustering was used. The conventional grouping approach showed an effect of age and fall history on several single risk factors. The multivariate approach identified four clusters. Three clusters differed from the overall mean by showing both risky and conservative strategies on the biomechanical outcome measures, whereas the fourth cluster did not display any particularly risky or conservative strategies. In contrast to the conventional approach, the multivariate approach showed the stepping behaviours identified did not contain only older adults or previous fallers. This highlights the limited predictive power for stair fall risk of approaches based on single-parameter comparisons between predetermined groups. Establishing the predictive power of the current approach for future stair falls in older people is imperative for its implementation as a falls prevention tool

    Context-sensitive autoassociative memories as expert systems in medical diagnosis

    Get PDF
    BACKGROUND: The complexity of our contemporary medical practice has impelled the development of different decision-support aids based on artificial intelligence and neural networks. Distributed associative memories are neural network models that fit perfectly well to the vision of cognition emerging from current neurosciences. METHODS: We present the context-dependent autoassociative memory model. The sets of diseases and symptoms are mapped onto a pair of basis of orthogonal vectors. A matrix memory stores the associations between the signs and symptoms, and their corresponding diseases. A minimal numerical example is presented to show how to instruct the memory and how the system works. In order to provide a quick appreciation of the validity of the model and its potential clinical relevance we implemented an application with real data. A memory was trained with published data of neonates with suspected late-onset sepsis in a neonatal intensive care unit (NICU). A set of personal clinical observations was used as a test set to evaluate the capacity of the model to discriminate between septic and non-septic neonates on the basis of clinical and laboratory findings. RESULTS: We show here that matrix memory models with associations modulated by context can perform automatic medical diagnosis. The sequential availability of new information over time makes the system progress in a narrowing process that reduces the range of diagnostic possibilities. At each step the system provides a probabilistic map of the different possible diagnoses to that moment. The system can incorporate the clinical experience, building in that way a representative database of historical data that captures geo-demographical differences between patient populations. The trained model succeeds in diagnosing late-onset sepsis within the test set of infants in the NICU: sensitivity 100%; specificity 80%; percentage of true positives 91%; percentage of true negatives 100%; accuracy (true positives plus true negatives over the totality of patients) 93,3%; and Cohen's kappa index 0,84. CONCLUSION: Context-dependent associative memories can operate as medical expert systems. The model is presented in a simple and tutorial way to encourage straightforward implementations by medical groups. An application with real data, presented as a primary evaluation of the validity and potentiality of the model in medical diagnosis, shows that the model is a highly promising alternative in the development of accuracy diagnostic tools
    corecore