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Abstract. Machine learning-based systems are now part of a wide array
of real-world applications seamlessly embedded in the social realm. In the
wake of this realisation, strict legal regulations for these systems are cur-
rently being developed, addressing some of the risks they may pose. This
is the coming of age of the interpretability and explainability problems in
machine learning-based data analysis, which can no longer be seen just
as an academic research problem. In this tutorial, associated to ESANN
2021 special session on “Interpretable Models in Machine Learning and Ex-
plainable Artificial Intelligence”, we discuss explainable and interpretable
machine learning as post-hoc and ante-hoc strategies to address these prob-
lems and highlight several aspects related to them, including their assess-
ment. The contributions accepted for the session are then presented in
this context.

1 Introduction

The design of Machine Learning (ML) models is currently dominated by the de-
velopment of deep Multi-Layer Perceptrons (MLPs) and variants thereof, which
consist of increasingly complex structures and modules [8, 18]. These approaches
may include specific components like convolutional layers for adaptation to spe-
cific tasks like image processing and classification [32, 31]. The mathematical
verification of deep networks justifies the theoretical correctness [11, 8, 18, 22].

The training of those complex models requires careful adaptation, frequently
accompanied by strategies to reduce numerical instabilities, to ensure robust-
ness and to avoid overfitting [25, 23, 47], including autoencoder learning for
the pre-training of layers, dropout learning approaches, as well as regularization
techniques and resilient network architectures [24, 48, 19, 32].

Nevertheless, the more complex the architectures, the more difficult the in-
terpretation or explanation of how and why a particular network prediction is
obtained, or the elucidation of which components of the complex system con-
tributed essentially to the obtained decision. For the development of successful
analyses in many application areas, this information is not demanded; yet, for
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many others like medical or engineering applications, especially in safety-critical
contexts such as diagnostic decision support and autonomous driving, it becomes
crucial to understand how the model generated the prediction. In other words,
the model acting as a black-box system is not sufficient any longer [51, 53]. Im-
portantly, for real-world applications, model interpretability or explainability or
both may be even a legal requirement. In the European context, this is now
enforced by the General Data Protection Regulation (GDPR) since 2018, which,
as explained by Bacciu et al. [6], mandates a “right to explanation” of decisions
made on citizens by “automated or artificially intelligent algorithmic systems”.
This is compounded by the current development of a legal framework on Artificial
Intelligence (AI) by the European Commission of obvious impact on ML [16].
While mirroring many of the GDPR elements, it also discriminates AI appli-
cations according to a risk assessment, from “minimal risk” to “unacceptable
risk”, with high risk AT applications being subject to strict obligations before
being marketed and even “limited risk” ones being tied to specific transparency
obligations. Note, though, that this legal proposal often refers to transparency
and trustworthiness of Al systems, instead of explainability and interpretability,
but with different connotations. As argued by Fink [17], and in relation to AI
explainability, Article 13 in the proposal specifies that high-risk AT systems are
to be developed “to be sufficiently transparent to ensure the user’s ability to
interpret and use the system’s output”, but without including any obligations
of “Al users to explain or justify the decisions they reach towards those affected
by them”.

This situation has made the development of tools and strategies to explain
those complex models an urgent necessity [45]. As pointed out in [43], these
post hoc strategies might be problematic, because explanations frequently are
not reliable an can even be misleading. An alternative to that are interpretable
models, which provide ante hoc inherently the possibility for model explanations.

In this tutorial, corresponding to the ESANN 2021 special session on “Inter-
pretable Models in Machine Learning and Explainable Artificial Intelligence”,
we discuss both strategies in more detail and highlight several aspects related to
them. We provide examples for the corresponding ML models and outline direc-
tions of ongoing and future research in this area. We also summarily describe
the contributions selected for the special session.

2 Explainable, Interpretable, and Robust Models in Ma-
chine Learning

As already mentioned in the introduction, the majority of currently applied
ML models are based on deep MLPs, which often achieve impressive results in
regression and classification problems in very different application areas. Un-
fortunately, most of these complex networks work as black-box algorithms such
that the user is only provided with the prediction or decision of the model,
but with none or very limited information on how these results were obtained.
However, the benefit of ML models will be much higher for the data analysts
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and the experts in the application domain if they are provided with additional
information about the prediction process. Such information, will increase the
trustworthiness of the model, allowing the user to draw further conclusions, and
extend, in this way, the knowledge base for the problem. In particular, several
desiderata for robust interpretability and explainability of ML models can be
identified as minimum requirements [3, 4]:

e FExplicitness and intelligibility: Are the explanations immediately under-
standable?

e Faithfulness: Are relevance scores indicative of true importance?

e Stability: How consistent are the explanations for similar or neighbouring
examples?

e Sparsity: Do the explanatory variables comprise, in some sense, a minimal
set?

e Transparency: Is the model not too complex and can be decomposed in
simple sub-modules which are interpretable and can be easily explained
(local and global interpretability)?

o Comprehensibility: Is the learning approach able to represent its learned
knowledge in a human understandable fashion?

e Model inspection: Is it possible to obtain model representations and de-
scriptions of specific model properties?

Two main strategies in this context can be observed: explainable artificial in-
telligence (abbreviated by XAI) and interpretable models, which we characterize
by the following definitions:

e Explainable models: The decision or prediction process of the model can
be comprehended post-hoc by experts in the field using additional tools and
elaborate considerations.

e Interpretable models: The decision or prediction process of the model
can be easily comprehended by experts in the field according to the ante-
hoc model design and their domain knowledge.

Both strategies have to provide a qualitative understanding of the process
that links the input variables (features) with the outcome or response, to make
the model plausible and the prediction trustable [42].

2.1 Post-hoc Approaches: Explain Machine Learning Models

Post-hoc approaches comprise those for black-box models for which explana-
tions are sought locally to back-up individual predictions. The corresponding
tools generally fall into the following five categories, starting with variants of
sensitivity analysis, but extending to more complex methods:

549



ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

e Feature attribution methods relate the model output to a small number
of numeric or semantic input features. The used algorithms for this task
are usually interpretable by design. However, it is difficult to derive them
from data computationally efficient. Some advances have been made in
generating nomograms for flexible models applied to tabular data [50].

e Saliency maps identify sparse components of the original signal that have
most influence on the model predictions, for example, Local Interpretable
Model-agnostic Explanations [42] or Class Activation Mappings [55].

e Activation maximization, for example, based on Generative Adversarial
Networks [56], use deep generative networks and tailored optimization
methods to generate class-relevant inputs for convolutional neural net-
works [13]. A human user can then understand the internal representations
assimilated by the network and the typical representations of the classes.

e Rule extraction based on decision trees allows for the extraction of decision
rules from deep neural networks to transfer knowledge from a reference
model into an explainable equivalent [41].

e Metric learning consists on deriving a metric from a classifier and using it
to map out the data structure [44]. Then, similarity networks are generated
from which a classification of an input can be obtained by consulting its
neighbours. Additionally, Siamese networks have become very popular of
late in the context of self-supervised learning [37].

2.2 Ante-hoc Approaches: Interpretable Models

It has been said that the best explanation of a simple model is the model itself
(i.e., it perfectly represents itself and is easy to understand). More formally, the
propagation of information in a form that can be interpretable by the end-user
with reasonable domain knowledge is clear from input through to prediction.
Thus, interpretable models have to be transparent on all levels. The models
surveyed in the following list belong to this category of transparent models:

e Linear regression: The linear dependencies between data and prediction
make these models inherently transparent. To some extent, this concept
can be adapted for logistic regression models as well.

e Decision trees: This rule based system generates logical implications for
model prediction, i.e., it can be taken as a rule-based model. The hierar-
chical structure allows a transparent decision making.

e Bayesian models: Bayesian models form a probabilistic directed acyclic
graphical model reflecting the dependencies between the input and the
outcome to predicted. Recent developments include cognitive aspects of
learning and knowledge representation separating detectable features and
the respective reasoning for inference [46].
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e Prototype methods: These methods are based on learning of or the extrac-
tion of prototypical representations of the dataset based on a dissimilarity
measures [39] and a prototype assignment rule (e. g., the nearest prototype
principle, k-nearest neighbors rule). By the prototypical representations
and the dissimilarity measure, this paradigm ensures interpretability in a
natural manner. For classification learning, the family of Learning Vector
Quantizers (LVQ) is well-known to provide possibilities for non-standard
metric usage and metric adaptation [9]. The latter allows a direct evalua-
tion of feature dependencies according to the model-inherent classification
correlation analysis [52]. Unsupervised models for representation learning
are the Neural Gas, Fuzzy c-Means, and Self-Organizing Maps [36, 40, 30].

o Generalized additive models: Recently, there has been interest in repre-
senting neural networks in the form of Generalized Additive Models, that
is to say, in the form of a linear combination of interpretable non-linear
functions of the inputs [2]. This approach has also been pursued with a
constructive approach to infer from a trained MLP a model with univariate
and bivariate effects, in the form of Partial Response Networks [33, 34]

o FEvolutionary fuzzy modelling: Fuzzy logic systems are capable of making
accurate predictions, while providing a reasonable level of interpretabil-
ity [41]. This approach has been successfully applied in practical contexts
including biomarker discovery and cancer diagnosis, leading to a commer-
cial solution for the discovery of interpretable diagnostic signatures [1].

o Self-supervised learning: Recently, self-supervised models have become
quite popular. Based on a contrastive loss, these models try to either
embed the data into meaningful manifolds of low dimensionality, or to
extract interpretable features, which can serve as input for other mod-
els [27, 28, 37].

2.3 How to Quantify Interpretability and Explainability

There is not yet complete consensus on how to evaluate the quality of an ex-
plainable or an interpretable method. Evaluation methods for interpretable ML
include “real humans on real tasks”, proposed by Doshi-Velez and Kim [14] and
“AT rationalization” introduced by Ehsan et al. [15]. The quality of a given ex-
planation needs to be evaluated in the context of its task, measuring how much
the explanations facilitate and improve decision making.

A possible approach is to take an application-grounded evaluation on the
respective task [10]. This requires conducting user experiments with the real
applications by having the explanations tested and evaluated by the user (who
is also a domain expert). A good baseline for such evaluation is how good a
human would be at explaining the decisions.

Good practice in evaluating interpretability includes the following [10]:

e Accuracy: The actual connection between the given explanation by the
explanation method and the prediction from the ML model.
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e Understandability: This is related to the easiness with which an explana-
tion is comprehended by the observer.

e Efficiency: This reflects the time necessary for a user to grasp the expla-
nation (an explanation should be understandable in a finite and preferably
short amount of time), as well as the usability of the tool presenting the
explanations.

The above criteria need to take into account the three “Cs” of interpretability:

e Completeness: Verifying the validity of the explanation (i.e., the coverage
of the explanation in terms of the number of instances which are comprised
by the explanation).

e (Correctness: Each explanation should generate trust. This property is
related to the label coherence of the inputs covered by the explanation
(i. e, inputs covered by a correct explanation should have the same label).

e Compactness: Each explanation should be succinct, which can be verified
by the number of conditions in the decision rule and the feature dimen-
sionality of a neighbor-based explanation.

Accordingly, an approach for model comparison and evaluation was proposed
by Backhaus and Seiffert [7] based on radar plots with the three axes perfor-
mance (accuracy), slimness (model complexity in terms of operations needed)
and interpretability (feature weighting, class typical representations, direct deci-
sion boundaries). Another aspect suggested for the evaluation of interpretability
is fidelity, understood as to which extent the model is able to imitate a black-box
predictor performance compared to the black-box model itself [21].

3 Contributions from ESANN 2021

Contributions of the special session on “Interpretable Models in Machine Learn-
ing and Explainable Artificial Intelligence” cover a broad range of the previously
mentioned aspects: interpretability of prototype-based methods for classification
and efficient data representation [49, 20, 29], interpretability of Support Vector
Machines (SVMs) [54], interpretability of random forests [38], explainability of
black-box models [12, 26, 35], and informativeness of linguistic properties in
word representations [5].

With respect to prototype-based models, the approach described by
Kaden et al. [29] realizes information bottleneck learning by combining coun-
terpropagation and LVQ, whereas Graeber et al. [20] uses context information
and prototype adaption while inference for better LVQ performance and inter-
pretability. Taylor and Merényi [49] propose an improvement to t-SNE which
allows automated specification of its perplexity parameter using topological in-
formation about a data manifold revealed through prototype-based learning.
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The partial response SVM approach proposed by Walters et al. [54] improves
the explanation of feature attributing and thus contributes to the better inter-
pretability of classification decisions generated by SVMs. In the field of random
forests, a current problem is that variable importance criteria are known to be
sensitive to correlated input variables, so that, for instance, the importance rank-
ing is unreliable. Chavent et al. [38] studied this problem and present a method
to estimate variable importance in the presence of correlated input variables.

In the explainability context of black-box models, Raulf et al. [12] propose a
smoothed version of layer-wise relevance propagation by computing the relevance
scores as averages over noisy inputs. The conducted experiments show that the
smoothed version leads to improved explanations. Moreover, Izzo et al. [26]
studies the determination of the Shapley baseline value because an inappro-
priate choice of baseline could negatively impact the explanatory power of the
method and possibly lead to incorrect interpretations. To avoid such defects,
they present a method for choosing a baseline according to a neutrality value
that is in accordance with how the model is used while decision making. Fur-
thermore, Madhikermi et al. [35] propose an adaptive weighted sampling method
that improves the representativeness of the generated samples in the presence
of strong non-linearities or exceptional input feature value combinations. To
verify this sampling strategy, they integrated it into the calculation approaches
of contextual importance and utility of features, which are sampling sensitive
explanation methods.

Finally, Babazhanova et al. [5] studies the informativeness of linguistic prop-
erties such as part-of-speech and named entities encoded in word representations
and show that the part-of-speech information is more important for word em-
beddings than the named entity property.

4 Conclusions

AT and, central to it, ML, are becoming increasingly bound by law, regulatory
frameworks, and ethical guidelines, all of which, in one way or another, place
their focus on issues of algorithmic trustworthiness, transparency, interpretabil-
ity, and explainability. Much of this responsibility is placed on the shoulders of
the data controllers and data analysts, which implies that the methods required
to comply with these obligations must enter a phase of maturity.

In this brief paper, we have described explainability and interpretability as
post hoc and ante hoc strategies. The former strategies can be seen as depending
on developments beyond the modeling itself (often domain-specific), whereas the
latter strategies focus on interpretable models that inherently offer the possibility
for model explanations.
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