121 research outputs found

    Impact of Sauropod Dinosaurs on Lagoonal Substrates in the Broome Sandstone (Lower Cretaceous), Western Australia

    Get PDF
    Existing knowledge of the tracks left by sauropod dinosaurs (loosely ‘brontosaurs’) is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous) of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints) beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world

    Caenorhabditis elegans Genomic Response to Soil Bacteria Predicts Environment-Specific Genetic Effects on Life History Traits

    Get PDF
    With the post-genomic era came a dramatic increase in high-throughput technologies, of which transcriptional profiling by microarrays was one of the most popular. One application of this technology is to identify genes that are differentially expressed in response to different environmental conditions. These experiments are constructed under the assumption that the differentially expressed genes are functionally important in the environment where they are induced. However, whether differential expression is predictive of functional importance has yet to be tested. Here we have addressed this expectation by employing Caenorhabditis elegans as a model for the interaction of native soil nematode taxa and soil bacteria. Using transcriptional profiling, we identified candidate genes regulated in response to different bacteria isolated in association with grassland nematodes or from grassland soils. Many of the regulated candidate genes are predicted to affect metabolism and innate immunity suggesting similar genes could influence nematode community dynamics in natural systems. Using mutations that inactivate 21 of the identified genes, we showed that most contribute to lifespan and/or fitness in a given bacterial environment. Although these bacteria may not be natural food sources for C. elegans, we show that changes in food source, as can occur in environmental disturbance, can have a large effect on gene expression, with important consequences for fitness. Moreover, we used regression analysis to demonstrate that for many genes the degree of differential gene expression between two bacterial environments predicted the magnitude of the effect of the loss of gene function on life history traits in those environments

    Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2

    Get PDF
    The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms

    The Parker problem:existence of smooth force-free fields and coronal heating

    Get PDF

    Synthetic biology approaches in drug discovery and pharmaceutical biotechnology

    Get PDF
    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology

    Single-copy nuclear genes resolve the phylogeny of the holometabolous insects

    Get PDF
    Background: Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders. Results: Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles) and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma), a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well known. Conclusion: These findings provide the most complete evolutionary framework for future comparative studies on holometabolous model organisms and contribute strong evidence for the resolution of the 'Strepsiptera problem', a long-standing and hotly debated issue in insect phylogenetics

    Gastrointestinal decontamination in the acutely poisoned patient

    Get PDF
    ObjectiveTo define the role of gastrointestinal (GI) decontamination of the poisoned patient.Data sourcesA computer-based PubMed/MEDLINE search of the literature on GI decontamination in the poisoned patient with cross referencing of sources.Study selection and data extractionClinical, animal and in vitro studies were reviewed for clinical relevance to GI decontamination of the poisoned patient.Data synthesisThe literature suggests that previously, widely used, aggressive approaches including the use of ipecac syrup, gastric lavage, and cathartics are now rarely recommended. Whole bowel irrigation is still often recommended for slow-release drugs, metals, and patients who "pack" or "stuff" foreign bodies filled with drugs of abuse, but with little quality data to support it. Activated charcoal (AC), single or multiple doses, was also a previous mainstay of GI decontamination, but the utility of AC is now recognized to be limited and more time dependent than previously practiced. These recommendations have resulted in several treatment guidelines that are mostly based on retrospective analysis, animal studies or small case series, and rarely based on randomized clinical trials.ConclusionsThe current literature supports limited use of GI decontamination of the poisoned patient
    corecore